Тригонометрическое тождество с большой степенью. Основные тригонометрические тождества: их формулировки и вывод

Тригонометрические тождества — это равенства, которые устанавливают связь между синусом, косинусом, тангенсом и котангенсом одного угла, которая позволяет находить любую из данных функций при условии, что будет известна какая-либо другая.

tg \alpha = \frac{\sin \alpha}{\cos \alpha}, \enspace ctg \alpha = \frac{\cos \alpha}{\sin \alpha}

tg \alpha \cdot ctg \alpha = 1

Данное тождество говорит о том, что сумма квадрата синуса одного угла и квадрата косинуса одного угла равна единице, что на практике дает возможность вычислить синус одного угла, когда известен его косинус и наоборот.

При преобразовании тригонометрических выражений очень часто используют данное тождество, которое позволяет заменять единицей сумму квадратов косинуса и синуса одного угла и также производить операцию замены в обратном порядке.

Нахождение тангенса и котангенса через синус и косинус

tg \alpha = \frac{\sin \alpha}{\cos \alpha},\enspace

Данные тождества образуются из определений синуса, косинуса, тангенса и котангенса. Ведь если разобраться, то по определению ординатой y является синус, а абсциссой x — косинус. Тогда тангенс будет равен отношению \frac{y}{x}=\frac{\sin \alpha}{\cos \alpha} , а отношение \frac{x}{y}=\frac{\cos \alpha}{\sin \alpha} — будет являться котангенсом.

Добавим, что только для таких углов \alpha , при которых входящие в них тригонометрические функции имеют смысл, будут иметь место тождества , ctg \alpha=\frac{\cos \alpha}{\sin \alpha} .

Например: tg \alpha = \frac{\sin \alpha}{\cos \alpha} является справедливой для углов \alpha , которые отличны от \frac{\pi}{2}+\pi z , а ctg \alpha=\frac{\cos \alpha}{\sin \alpha} — для угла \alpha , отличного от \pi z , z — является целым числом.

Зависимость между тангенсом и котангенсом

tg \alpha \cdot ctg \alpha=1

Данное тождество справедливо только для таких углов \alpha , которые отличны от \frac{\pi}{2} z . Иначе или котангенс или тангенс не будут определены.

Опираясь на вышеизложенные пункты, получаем, что tg \alpha = \frac{y}{x} , а ctg \alpha=\frac{x}{y} . Отсюда следует, что tg \alpha \cdot ctg \alpha = \frac{y}{x} \cdot \frac{x}{y}=1 . Таким образом, тангенс и котангенс одного угла, при котором они имеют смысл, являются взаимно обратными числами.

Зависимости между тангенсом и косинусом, котангенсом и синусом

tg^{2} \alpha + 1=\frac{1}{\cos^{2} \alpha} — сумма квадрата тангенса угла \alpha и 1 , равна обратному квадрату косинуса этого угла. Данное тождество справедливо для всех \alpha , отличных от \frac{\pi}{2}+ \pi z .

1+ctg^{2} \alpha=\frac{1}{\sin^{2}\alpha} — сумма 1 и квадрат котангенса угла \alpha , равняется обратному квадрату синуса данного угла. Данное тождество справедливо для любого \alpha , отличного от \pi z .

Примеры с решениями задач на использование тригонометрических тождеств

Пример 1

Найдите \sin \alpha и tg \alpha , если \cos \alpha=-\frac12 и \frac{\pi}{2} < \alpha < \pi ;

Показать решение

Решение

Функции \sin \alpha и \cos \alpha связывает формула \sin^{2}\alpha + \cos^{2} \alpha = 1 . Подставив в эту формулу \cos \alpha = -\frac12 , получим:

\sin^{2}\alpha + \left (-\frac12 \right)^2 = 1

Это уравнение имеет 2 решения:

\sin \alpha = \pm \sqrt{1-\frac14} = \pm \frac{\sqrt 3}{2}

По условию \frac{\pi}{2} < \alpha < \pi . Во второй четверти синус положителен, поэтому \sin \alpha = \frac{\sqrt 3}{2} .

Для того, чтобы найти tg \alpha , воспользуемся формулой tg \alpha = \frac{\sin \alpha}{\cos \alpha}

tg \alpha = \frac{\sqrt 3}{2} : \frac12 = \sqrt 3

Пример 2

Найдите \cos \alpha и ctg \alpha , если и \frac{\pi}{2} < \alpha < \pi .

Показать решение

Решение

Подставив в формулу \sin^{2}\alpha + \cos^{2} \alpha = 1 данное по условию число \sin \alpha=\frac{\sqrt3}{2} , получаем \left (\frac{\sqrt3}{2}\right)^{2} + \cos^{2} \alpha = 1 . Это уравнение имеет два решения \cos \alpha = \pm \sqrt{1-\frac34}=\pm\sqrt\frac14 .

По условию \frac{\pi}{2} < \alpha < \pi . Во второй четверти косинус отрицателен, поэтому \cos \alpha = -\sqrt\frac14=-\frac12 .

Для того, чтобы найти ctg \alpha , воспользуемся формулой ctg \alpha = \frac{\cos \alpha}{\sin \alpha} . Соответствующие величины нам известны.

ctg \alpha = -\frac12: \frac{\sqrt3}{2} = -\frac{1}{\sqrt 3} .

    Тригонометрические функции - Запрос «sin» перенаправляется сюда; см. также другие значения. Запрос «sec» перенаправляется сюда; см. также другие значения. Запрос «Синус» перенаправляется сюда; см. также другие значения … Википедия

    Tan

    Рис. 1 Графики тригонометрических функций: синуса, косинуса, тангенса, секанса, косеканса, котангенса Тригонометрические функции вид элементарных функций. Обычно к ним относят синус (sin x), косинус (cos x), тангенс (tg x), котангенс (ctg x),… … Википедия

    Косинус - Рис. 1 Графики тригонометрических функций: синуса, косинуса, тангенса, секанса, косеканса, котангенса Тригонометрические функции вид элементарных функций. Обычно к ним относят синус (sin x), косинус (cos x), тангенс (tg x), котангенс (ctg x),… … Википедия

    Котангенс - Рис. 1 Графики тригонометрических функций: синуса, косинуса, тангенса, секанса, косеканса, котангенса Тригонометрические функции вид элементарных функций. Обычно к ним относят синус (sin x), косинус (cos x), тангенс (tg x), котангенс (ctg x),… … Википедия

    Секанс - Рис. 1 Графики тригонометрических функций: синуса, косинуса, тангенса, секанса, косеканса, котангенса Тригонометрические функции вид элементарных функций. Обычно к ним относят синус (sin x), косинус (cos x), тангенс (tg x), котангенс (ctg x),… … Википедия

    История тригонометрии - Геодезические измерения (XVII век) … Википедия

    Формула тангенса половинного угла - В тригонометрии, формула тангенса половинного угла связывает тангенс половинного угла с тригонометрическими функциями полного угла: Различные вариации этой формулы выглядят следующим образом … Википедия

    Тригонометрия - (от греч. τρίγονο (треугольник) и греч. μετρειν (измерять), то есть измерение треугольников) раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Данный термин впервые появился в 1595 г. как… … Википедия

    Решение треугольников - (лат. solutio triangulorum) исторический термин, означающий решение главной тригонометрической задачи: по известным данным о треугольнике (стороны, углы и т. д.) найти остальные его характеристики. Треугольник может располагаться на… … Википедия

Книги

  • Комплект таблиц. Алгебра и начала анализа. 10 класс. 17 таблиц + методика , . Таблицы отпечатаны на плотном полиграфическом картоне размером 680 х 980 мм. В комплект входит брошюра с методическими рекомендациями для учителя. Учебный альбом из 17 листов.… Купить за 3944 руб
  • Таблицы интегралов и другие математические формулы , Двайт Г.Б.. Десятое издание известного справочника содержит весьма подробные таблицы неопределенных и определенных интегралов, а также большое число других математических формул: разложения в ряды,…
В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Это последний и самый главный урок, необходимый для решения задач B11. Мы уже знаем, как переводить углы из радианной меры в градусную (см. урок «Радианная и градусная мера угла »), а также умеем определять знак тригонометрической функции, ориентируясь по координатным четвертям (см. урок «Знаки тригонометрических функций »).

Дело осталось за малым: вычислить значение самой функции - то самое число, которое записывается в ответ. Здесь на помощь приходит основное тригонометрическое тождество.

Основное тригонометрическое тождество. Для любого угла α верно утверждение:

sin 2 α + cos 2 α = 1.

Эта формула связывает синус и косинус одного угла. Теперь, зная синус, мы легко найдем косинус - и наоборот. Достаточно извлечь квадратный корень:

Обратите внимание на знак «±» перед корнями. Дело в том, что из основного тригонометрического тождества непонятно, каким был исходный синус и косинус: положительным или отрицательным. Ведь возведение в квадрат - четная функция, которая «сжигает» все минусы (если они были).

Именно поэтому во всех задачах B11, которые встречаются в ЕГЭ по математике, обязательно есть дополнительные условия, которые помогают избавиться от неопределенности со знаками. Обычно это указание на координатную четверть, по которой можно определить знак.

Внимательный читатель наверняка спросит: «А как быть с тангенсом и котангенсом?» Напрямую вычислить эти функции из приведенных выше формул нельзя. Однако существуют важные следствия из основного тригонометрического тождества, которые уже содержат тангенсы и котангенсы. А именно:

Важное следствие: для любого угла α можно переписать основное тригонометрическое тождество следующим образом:

Эти уравнения легко выводятся из основного тождества - достаточно разделить обе стороны на cos 2 α (для получения тангенса) или на sin 2 α (для котангенса).

Рассмотрим все это на конкретных примерах. Ниже приведены настоящие задачи B11, которые взяты из пробных вариантов ЕГЭ по математике 2012.

Нам известен косинус, но неизвестен синус. Основное тригонометрическое тождество (в «чистом» виде) связывает как раз эти функции, поэтому будем работать с ним. Имеем:

sin 2 α + cos 2 α = 1 ⇒ sin 2 α + 99/100 = 1 ⇒ sin 2 α = 1/100 ⇒ sin α = ±1/10 = ±0,1.

Для решения задачи осталось найти знак синуса. Поскольку угол α ∈ (π /2; π ), то в градусной мере это записывается так: α ∈ (90°; 180°).

Следовательно, угол α лежит во II координатной четверти - все синусы там положительны. Поэтому sin α = 0,1.

Итак, нам известен синус, а надо найти косинус. Обе эти функции есть в основном тригонометрическом тождестве. Подставляем:

sin 2 α + cos 2 α = 1 ⇒ 3/4 + cos 2 α = 1 ⇒ cos 2 α = 1/4 ⇒ cos α = ±1/2 = ±0,5.

Осталось разобраться со знаком перед дробью. Что выбрать: плюс или минус? По условию, угол α принадлежит промежутку (π 3π /2). Переведем углы из радианной меры в градусную - получим: α ∈ (180°; 270°).

Очевидно, это III координатная четверть, где все косинусы отрицательны. Поэтому cos α = −0,5.

Задача. Найдите tg α , если известно следующее:

Тангенс и косинус связаны уравнением, следующим из основного тригонометрического тождества:

Получаем: tg α = ±3. Знак тангенса определяем по углу α . Известно, что α ∈ (3π /2; 2π ). Переведем углы из радианной меры в градусную - получим α ∈ (270°; 360°).

Очевидно, это IV координатная четверть, где все тангенсы отрицательны. Поэтому tg α = −3.

Задача. Найдите cos α , если известно следующее:

Снова известен синус и неизвестен косинус. Запишем основное тригонометрическое тождество:

sin 2 α + cos 2 α = 1 ⇒ 0,64 + cos 2 α = 1 ⇒ cos 2 α = 0,36 ⇒ cos α = ±0,6.

Знак определяем по углу. Имеем: α ∈ (3π /2; 2π ). Переведем углы из градусной меры в радианную: α ∈ (270°; 360°) - это IV координатная четверть, косинусы там положительны. Следовательно, cos α = 0,6.

Задача. Найдите sin α , если известно следующее:

Запишем формулу, которая следует из основного тригонометрического тождества и напрямую связывает синус и котангенс:

Отсюда получаем, что sin 2 α = 1/25, т.е. sin α = ±1/5 = ±0,2. Известно, что угол α ∈ (0; π /2). В градусной мере это записывается так: α ∈ (0°; 90°) - I координатная четверть.

Итак, угол находится в I координатной четверти - все тригонометрические функции там положительны, поэтому sin α = 0,2.

Основные тригонометрические тождества.

secα читают: «секанс альфа». Это число, обратное косинусу альфа.

соsecα читают: «косеканс альфа». Это число, обратное синусу альфа.

Примеры. Упростить выражение:

а) 1 – sin 2 α; б) cos 2 α – 1; в) (1 – cosα)(1+cosα); г) sin 2 αcosα – cosα; д) sin 2 α+1+cos 2 α;

е) sin 4 α+2sin 2 αcos 2 α+cos 4 α; ж) tg 2 α – sin 2 αtg 2 α; з) ctg 2 αcos 2 α – ctg 2 α; и) cos 2 α+tg 2 αcos 2 α.

а) 1 – sin 2 α = cos 2 α по формуле 1) ;

б) cos 2 α – 1 =- (1 – cos 2 α) = -sin 2 α также применили формулу 1) ;

в) (1 – cosα)(1+cosα) = 1 – cos 2 α = sin 2 α. Вначале мы применили формулу разности квадратов двух выражений: (a – b)(a+b) = a 2 – b 2 , а затем формулу 1) ;

г) sin 2 αcosα – cosα. Вынесем общий множитель за скобки.

sin 2 αcosα – cosα = cosα(sin 2 α – 1) = -cosα(1 – sin 2 α) = -cosα cos 2 α = -cos 3 α. Вы, конечно, уже заметили, что так как 1 – sin 2 α = cos 2 α, то sin 2 α – 1 = -cos 2 α. Точно так же, если 1 – cos 2 α = sin 2 α, то cos 2 α – 1 = -sin 2 α.

д ) sin 2 α+1+cos 2 α = (sin 2 α+cos 2 α)+1 = 1+1 = 2;

е ) sin 4 α+2sin 2 αcos 2 α+cos 4 α. Имеем: квадрат выражения sin 2 α плюс удвоенное произведение sin 2 α на cos 2 α и плюс квадрат второго выражения cos 2 α. Применим формулу квадрата суммы двух выражений: a 2 +2ab+b 2 =(a+b) 2 . Далее применим формулу 1) . Получим: sin 4 α+2sin 2 αcos 2 α+cos 4 α = (sin 2 α+cos 2 α) 2 = 1 2 = 1;

ж) tg 2 α – sin 2 αtg 2 α = tg 2 α(1 – sin 2 α) = tg 2 α cos 2 α = sin 2 α. Применили формулу 1) , а затем формулу 2) .

Запомните: tg α ∙ cos α = sin α.

Аналогично, используя формулу 3) можно получить: ctg α ∙ sin α = cos α. Запомнить!

з) ctg 2 αcos 2 α – ctg 2 α = ctg 2 α(cos 2 α – 1) = ctg 2 α (-sin 2 α) = -cos 2 α.

и) cos 2 α+tg 2 αcos 2 α = cos 2 α(1+tg 2 α) = 1. Мы вначале вынесли общий множитель за скобки, а содержимое скобок упростили по формуле 7).

Преобразовать выражение:

Мы применили формулу 7) и получили произведение суммы двух выражений на неполный квадрат разности этих выражений – формулу суммы кубов двух выражений.