Атмосфера. Строение и состав атмосферы Земли

Состав Земли. Воздух

Воздух - это механическая смесь из различных газов, составляющих атмосферу Земли. Воздух необходим для дыхания живых организмов, находит широкое применение в промышленности.

То, что воздух представляет собой именно смесь, а не однородную субстанцию, было доказано в ходе экспериментов шотландского учёного Джозефа Блэка. В ходе одного из них учёный обнаружил, что при нагревании белой магнезии (углекислый магний) выделяется «связанный воздух», то есть углекислый газ, и образуется жжёная магнезия (окись магния). При обжиге известняка, напротив, происходит удаление «связанного воздуха». На основе этих экспериментов учёный сделал вывод, что различие между углекислыми и едкими щелочами заключается в том, что в состав первых входит углекислый газ, являющийся одной из составных частей воздуха. Сегодня же мы знаем, что кроме углекислого, в состав земного воздуха входят:

Указанное в таблице соотношение газов в земной атмосфере характерно для её нижних слоёв, до высоты 120 км. В этих областях лежит хорошо перемешанная, однородная по составу область, называемая гомосферой. Выше гомосферы лежит гетеросфера, для которой характерно разложение молекул газов на атомы и ионы. Области отделены друг от друга турбопаузой.

Химическая реакция, при которой под воздействием солнечного и космического излучения происходит разложение молекул на атомы, называется фотодиссоциацией. При распаде молекулярного кислорода образуется атомарный кислород, являющийся основным газом атмосферы на высотах свыше 200 км. На высотах от 1200 км начинают преобладать водород и гелий, являющиеся наиболее лёгкими из газов.

Поскольку основная масса воздуха сосредоточена в 3 нижних атмосферных слоях, изменения состава воздуха на высотах более 100 км не оказывают заметного влияния на общий состав атмосферы.

Азот - самый распространенный газ, на долю которого приходится более трёх четвертей объёма земного воздуха. Современный азот образовался при окислении ранней аммиачно-водородной атмосферы молекулярным кислородом, который образуется в процессе фотосинтеза. В настоящее время небольшое количество азота в атмосферу поступает в результате денитрификации - процесса восстановления нитратов до нитритов, с последующим образованием газообразных оксидов и молекулярного азота, который производится анаэробными прокариотами. Часть азота в атмосферу поступает при вулканических извержениях.

В верхних слоях атмосферы при воздействии электрических разрядов при участии озона молекулярный азот окисляется до монооксида азота:

N 2 + O 2 → 2NO

В обычных условиях монооксид тотчас же вступает в реакцию с кислородом с образованием закиси азота:

2NO + O 2 → 2N 2 O

Азот является важнейшим химическим элементом земной атмосферы. Азот входит в состав белков, обеспечивает минеральное питание растений. Он определяет скорость биохимических реакций, играет роль разбавителя кислорода.

Вторым по распространённости газом атмосферы Земли является кислород. Образование этого газа связывают с фотосинтезирующей деятельностью растений и бактерий. И чем более разнообразными и многочисленными становились фотосинтезирующие организмы, тем более значительным становился процесс содержания кислорода в атмосфере. Небольшое количество тяжёлого кислорода выделяется при дегазации мантии.

В верхних слоях тропосферы и стратосферы под воздействием ультрафиолетового солнечного излучения (обозначим его как hν) образуется озон:

O 2 + hν → 2O

В результате действия того же ультрафиолетового излучения происходит и распад озона:

О 3 + hν → О 2 + О

О 3 + O → 2О 2

В результате первой реакции образуется атомарный кислород, в результате второй - молекулярный кислород. Все 4 реакции носят название «механизм Чепмена», по имени британского учёного Сидни Чепмена открывшего их в 1930 году.

Кислород служит для дыхания живых организмов. С его помощью происходят процессы окисления и горения.

Озон служит для защиты живых организмов от ультрафиолетового излучения, которое вызывает необратимые мутации. Наибольшая концентрация озона наблюдается в нижней стратосфере в пределах т.н. озонового слоя или озонового экрана, лежащего на высотах 22-25 км. Содержание озона невелико: при нормальном давлении весь озон земной атмосферы занимал бы слой толщиной всего 2,91 мм.

Образование третьего по распространенности в атмосфере газа аргона, а также неона, гелия, криптона и ксенона связывают с вулканическими извержениями и распадом радиоактивных элементов.

В частности гелий является продуктом радиоактивного распада урана, тория и радия: 238 U → 234 Th + α, 230 Th → 226 Ra + 4 He, 226 Ra → 222 Rn + α (в этих реакция α-частица является ядром гелия, которая в процессе потери энергии захватывает электроны и становится 4 He).

Аргон образуется в процессе распада радиоактивного изотопа калия: 40 K → 40 Ar + γ.

Неон улетучивается из изверженных пород.

Криптон образуется как конечный продукт распада урана (235 U и 238 U) и тория Th.

Основная масса атмосферного криптона образовалась ещё на ранних стадиях эволюции Земли как результат распада трансурановых элементов с феноменально малым периодом полураспада или поступила из космоса, содержание криптона в котором в десять миллионов раз выше чем на Земле.

Ксенон является результатом деления урана, но основная масса этого газа осталась с ранних стадий образования Земли, от первичной атмосферы.

Углекислый газ поступает в атмосферу в результате вулканических извержений и в процессе разложения органического вещества. Его содержание в атмосфере средних широт Земли сильно различается в зависимости от сезонов года: зимой количество CO 2 возрастает, а летом - снижается. Связано данное колебание с деятельностью растений, которые используют углекислый газ в процессе фотосинтеза.

Водород образуется в результате разложения воды солнечным излучением. Но, будучи самым лёгким из газов, входящих в состав атмосферы, постоянно улетучивается в космическое пространство, и потому содержание его в атмосфере очень невелико.

Водяной пар является результатом испарения воды с поверхности озёр, рек, морей и суши.

Концентрация основных газов в нижних слоях атмосферы, за исключением водяных паров и углекислого газа, постоянна. В небольших количествах в атмосфере содержатся оксид серы SO 2 , аммиак NH 3 , монооксид углерода СО, озон O 3 , хлороводород HCl, фтороводород HF, монооксид азота NO, углеводороды, пары ртути Hg, йода I 2 и многие другие. В нижнем атмосферном слое тропосфере постоянно находится большое количество взвешенных твёрдых и жидких частиц.

Источниками твёрдых частиц в атмосфере Земли являются вулканические извержения, пыльца растений, микроорганизмы, а в последнее время и деятельность человека, например, сжигание ископаемого топлива в процессе производства. Мельчайшие частицы пыли, которые являющиеся ядрами конденсации, служат причинами образования туманов и облаков. Без твёрдых частиц, постоянно присутствующих в атмосфере, на Землю не выпадали бы осадки.

Химический состав воздуха имеет важное гигиеническое значение, так как он играет решающую роль в осуществлении дыхательной функции организма. Атмосферный воздух представляет собой смесь кислорода, углекислого газа, аргона и других газов в соотношениях, приведенных в табл. 1.

Кислород (О 2) - наиболее важная для человека составная часть воздуха. В состоянии покоя человек обычно поглощает в среднем 0,3 л кислорода в 1 мин.

При физической деятельности потребление кислорода резко возрастает и может достигнуть 4,5/5 л и более в 1 мин. Колебания содержания кислорода в атмосферном воздухе невелики и не превышают, как правило, 0,5 %.

В жилых, общественных и спортивных помещениях значительных изменений в содержании кислорода не наблюдается, так как в них проникает наружный воздух. При самых неблагоприятных гигиенических условиях в помещении отмечалось уменьшение содержания кислорода на 1 %. Такие колебания не оказывают заметного влияния на организм.

Обычно физиологические сдвиги наблюдаются при снижении содержания кислорода до 16-17 %. Если его содержание уменьшается до 11 -13% (при подъеме на высоту), появляются ярко выраженная кислородная недостаточность, резкое ухудшение самочувствия и снижение работоспособности. Содержание кислорода до 7-8 % может привести к смертельному исходу.

В спортивной практике в целях повышения работоспособности и интенсивности восстановительных процессов используется вдыхание кислорода.

Углекислый газ (СО 2), или двуокись углерода,- бесцветный газ без запаха, образующийся при дыхании людей и животных, гниении и разложении органических веществ, сгорании топлива и др. В атмосферном воздухе вне населенных пунктов содержание углекислого газа составляет в среднем 0,04 %, а в промышленных центрах его концентрация повышается до 0,05-0,06 %. В жилых иобщественных зданиях при нахождении в них большого количества людей содержание углекислого газа может увеличиваться до 0,6-0,8 %. При наихудших гигиенических условиях в помещении (большое скопление людей, плохая вентиляция и др.) его концентрация обычно не превышает 1 % из-за проникновения наружного воздуха. Такие концентрации не вызывают отрицательных явлений в организме.

При продолжительном вдыхании воздуха с содержанием 1 - 1,5% углекислого газа отмечается ухудшение самочувствия, а при 2-2,5 % обнаруживаются патологические сдвиги. Значительные нарушения функций организма и снижение работоспособности происходят, когда содержание углекислого газа составляет 4-5 %. При содержании 8-10 % происходит потеря сознания и смерть. Значительное повышение содержания углекислого газа в воздухе может возникнуть при аварийных ситуациях в замкнутых пространствах (шахтах, рудниках, подводных лодках, бомбоубежищах идр.) или в тех местах, где происходит интенсивное разложение органических веществ.

Определение содержания углекислого газа в жилых, общественных и спортивных сооружениях может служить косвенным показателем загрязнения воздуха продуктами жизнедеятельности людей. Как уже отмечалось, сам по себе углекислый газ в этих случаях не причиняет вреда организму, однако вместе с увеличением его содержания наблюдается ухудшение физических и химических свойств воздуха (повышается температура и влажность, нарушается, ионный состав, появляются дурно пахнущие газы). Воздух в помещениях считается недоброкачественным, если содержание углекислого газа в нем превышает 0,1 %. Эта величина принимается как расчетная при проектировании и устройстве вентиляции в помещениях.

Нижние слои атмосферы состоят из смеси газов, называемой воздухом, в которой находятся во взвешенном состоянии жидкие и твердые частички. Общая масса последних незначительна в сравне­нии со всей массой атмосферы.

Атмосферный воздух представляет собой смесь газов, основными из которых являются азот N2, кислород О2, аргон Аr, углекислый газ СО2 и водяной пар. Воздух без водяного пара называют сухим воздухом. У зем­ной поверхности сухой воздух на 99% состоит из азота (78% по объему или 76% по массе) и кислорода (21% по объему или 23% по массе). Оставшийся 1% приходится почти целиком на аргон. Всего 0,08% остается на углекислый газ СО2. Многочисленные другие газы входят в состав воздуха в тысячных, миллион­ных и еще меньших долях процента. Это криптон, ксенон, неон, гелий, водород, озон, йод, радон, метан, аммиак, перекись водорода, закись азота и др. Состав сухого атмосферного воздуха вблизи поверхности Земли приведен в табл. 1.

Таблица 1

Состав сухого атмосферного воздуха вблизи поверхности Земли

Объемная концентрация, %

Молекулярная масса

Плотность

по отношению к плотности

сухого воздуха

Кислород (O2)

Диоксид углерода (CO2)

Криптон (Kr)

Водород (H2)

Ксенон (Xe)

Сухой воздух

Процентный состав сухого воздуха у земной поверхности очень постоянен и практически одинаков повсюду. Существенно меняться может только содержание углекислого газа. В результате процессов дыхания и горения его объемное содержание в воздухе закрытых, плохо вентилируемых помещений, а также промышленных центров может возрастать в несколько раз - до 0,1-0,2%. Совершенно незначительно меняется процентное содержание азота и кислорода.

В состав реальной атмосферы входят три важных переменных компонента – водяной пар, озон и углекислый газ. Содержание водяного пара в воздухе меняется в значительных пределах, в отличие от других составных частей воздуха: у земной поверхности оно колеблется между сотыми долями процента и несколькими процентами (от 0,2% в полярных широтах до 2,5% у экватора, а в отдельных случаях колеблется почти от нуля до 4%). Это объясняется тем, что при существующих в атмосфере условиях водяной пар может переходить в жидкое и твердое состояние и, наоборот, может поступать в атмосферу заново вследствие испарения с земной поверхности.

Водяной пар непрерывно поступает в атмосферу путем испарения с водных поверхностей, с влажной почвы и путем транспирации растений, при этом в разных местах и в разное время он поступает в различных количествах. От земной поверхности он распространяется вверх, а воздушными течениями переносится из одних мест Земли в другие.

В атмосфере может возникать состояние насыщения. В таком состоянии водяной пар содержится в воздухе в количестве, предельно возможном при данной температуре. Водяной пар при этом называют насыщающим (или насыщенным), а воздух, содержащий его, насыщенным.

Состояние насыщения обычно достигается при понижении температуры воздуха. Когда это состояние достигнуто, то при дальнейшем понижении температуры часть водяного пара становится избыточной и конденсируется, переходит в жидкое или твердое состояние. В воздухе возникают водяные капельки и ледяные кристаллики облаков и туманов. Облака могут снова испаряться; в других случаях капельки и кристаллики облаков, укрупняясь, могут выпадать на земную поверхность в виде осадков. Вследствие всего этого содержание водяного пара в каждом участке атмосферы непрерывно меняется.

С водяным паром в воздухе и с его переходами из газообразного состояния в жидкое и твердое связаны важнейшие процессы погоды и особенности климата. Наличие водяного пара в атмосфере существенно сказывается на тепловых условиях атмосферы и земной поверхности. Водяной пар сильно поглощает длинноволновую инфракрасную радиацию, которую излучает земная поверхность. В свою очередь и сам он излучает инфракрасную радиацию, большая часть которой идет к земной поверхности. Это уменьшает ночное охлаждение земной поверхности и тем самым также нижних слоев воздуха.

На испарение воды с земной поверхности затрачиваются большие количества тепла, а при конденсации водяного пара в атмосфере это тепло отдается воздуху. Облака, возникающие в результате конденсации, отражают и поглощают солнечную радиацию на ее пути к земной поверхности. Осадки, выпадающие из облаков, являются важнейшим элементом погоды и климата. Наконец, наличие водяного пара в атмосфере имеет важное значение для физиологических процессов.

Водяной пар, как всякий газ, обладает упругостью (давлением). Упругость водяного пара е пропорциональна его плотности (содержанию в единице объема) и его абсолютной температуре. Она выражается в тех же единицах, что и давление воздуха, т.е. либо в миллиметрах ртутного столба, либо в миллибарах.

Упругость водяного пара в состоянии насыщения называют упругостью насыщения. Это максимальная упругость водяного пара, возможная при данной температуре. Например, при температуре 0° упругость насыщения равна 6,1 мб. На каждые 10° температуры упругость насыщения увеличивается примерно вдвое.

Если воздух содержит водяного пара меньше, чем нужно для насыщения его при данной температуре, можно определить, насколько воздух близок к состоянию насыщения. Для этого вычисляют относительную влажность. Так называют отношение фактической упругости е водяного пара, находящегося в воздухе, к упругости насыщения Е при той же температуре, выраженное в процентах, т.е.

Например, при температуре 20° упругость насыщения равна 23,4 мб.Если при этом фактическая упругость пара в воздухе будет 11,7 мб,то относительная влажность воздуха равна

Упругость водяного пара у земной поверхности меняется от сотых долей миллибара (при очень низких температурах зимой в Антарктиде и в Якутии) до 35 мби более (у экватора). Чем теплее воздух, тем больше водяного пара может он содержать без насыщения и, стало быть, тем больше может бытьв нем упругость водяного пара.

Относительная влажность воздуха может принимать все значения – от нуля для вполне сухого воздуха (е = 0) до 100% для состояния насыщения (е = Е).

Атмосфера - газовая оболочка нашей планеты, которая вращается вместе с Землей. Газ, находящийся в атмосфере, называют воздухом. Атмосфера соприкасается с гидросферой и частично покрывает литосферу. А вот верхние границы определить трудно. Условно принято считать, что атмосфера простирается вверх приблизительно на три тысячи километров. Там она плавно перетекает в безвоздушное пространство.

Химический состав атмосферы Земли

Формирование химического состава атмосферы началось около четырех миллиардов лет назад. Изначально атмосфера состояла лишь из легких газов - гелия и водорода. По мнению ученых исходными предпосылками создания газовой оболочки вокруг Земли стали извержения вулканов, которые вместе с лавой выбрасывали огромное количество газов. В дальнейшем начался газообмен с водными пространствами, с живыми организмами, с продуктами их деятельности. Состав воздуха постепенно менялся и в современном виде зафиксировался несколько миллионов лет назад.

Главные же составляющие атмосферы это азот (около 79%) и кислород (20%). Оставшийся процент (1%) приходится на следующие газы: аргон, неон, гелий, метан, углекислый газ, водород, криптон, ксенон, озон, аммиак, двуокиси серы и азота, закись азота и окись углерода, входящих в этот один процент.

Кроме того, в воздухе содержится водяной пар и твердые частицы (пыльца растений, пыль, кристаллики соли, примеси аэрозолей).

В последнее время ученые отмечают не качественное, а количественное изменение некоторых ингредиентов воздуха. И причина тому - человек и его деятельность. Только за последние 100 лет содержание углекислого газа значительно возросло! Это чревато многими проблемами, самая глобальная из которых - изменение климата.

Формирование погоды и климата

Атмосфера играет важнейшую роль в формировании климата и погоды на Земле. Очень многое зависит от количества солнечных лучей, от характера подстилающей поверхности и атмосферной циркуляции.

Рассмотрим факторы по порядку.

1. Атмосфера пропускает тепло солнечных лучей и поглощает вредную радиацию. О том, что лучи Солнца падают на разные участки Земли под разными углами, знали еще древние греки. Само слово "климат" в переводе с древнегреческого означает "наклон". Так, на экваторе солнечные лучи падают практически отвесно, потому здесь очень жарко. Чем ближе к полюсам, тем больше угол наклона. И температура понижается.

2. Из-за неравномерного нагревания Земли в атмосфере формируются воздушные течения. Они классифицируются по своим размерам. Самые маленькие (десятки и сотни метров) - это местные ветра. Далее следуют муссоны и пассаты, циклоны и антициклоны, планетарные фронтальные зоны.

Все эти воздушные массы постоянно перемещаются. Некоторые из них довольно статичны. Например, пассаты, которые дуют от субтропиков по направлению к экватору. Движение других во многом зависит от атмосферного давления.

3. Атмосферное давление - еще один фактор, влияющий на формирование климата. Это давление воздуха на поверхность земли. Как известно, воздушные массы перемещаются с области с повышенным атмосферным давлением в сторону области, где это давление ниже.

Всего выделено 7 зон. Экватор - зона низкого давления. Далее, по обе стороны от экватора вплоть до тридцатых широт - область высокого давления. От 30° до 60° - опять низкое давление. А от 60° до полюсов - зона высокого давления. Между этими зонами и циркулируют воздушные массы. Те, что идут с моря на сушу, несут дожди и ненастье, а те, что дуют с континентов - ясную и сухую погоду. В местах, где воздушные течения сталкиваются, образуются зоны атмосферного фронта, которые характеризуются осадками и ненастной, ветреной погодой.

Ученые доказали, что от атмосферного давления зависит даже самочувствие человека. По международным стандартам нормальное атмосферное давление - 760 мм рт. столба при температуре 0°C. Этот показатель рассчитан на те участки суши, которые находятся практически вровень с уровнем моря. С высотой давление понижается. Поэтому, например, для Санкт-Петербурга 760 мм рт.ст. - это норма. А вот для Москвы, которая расположена выше, нормальное давление - 748 мм рт.ст.

Давление меняется не только по вертикали, но и по горизонтали. Особенно это чувствуется при прохождении циклонов.

Строение атмосферы

Атмосфера напоминает слоеный пирог. И каждый слой имеет свои особенности.

. Тропосфера - самый близкий к Земле слой. "Толщина" этого слоя изменяется по мере удаления от экватора. Над экватором слой простирается ввысь на 16-18 км, в умеренных зонах - на 10-12км, на полюсах - на 8-10 км.

Именно здесь содержится 80% всей массы воздуха и 90% водяного пара. Здесь образуются облака, возникают циклоны и антициклоны. Температура воздуха зависит от высоты местности. В среднем она понижается на 0,65° C на каждые 100 метров.

. Тропопауза - переходный слой атмосферы. Его высота - от нескольких сотен метров до 1-2 км. Температура воздуха летом выше, чем зимой. Так, например, над полюсами зимой -65° C. А над экватором в любое время года держится -70° C.

. Стратосфера - это слой, верхняя граница которого проходит на высоте 50-55 километров. Турбулентность здесь низкая, содержание водяного пара в воздухе - ничтожное. Зато очень много озона. Максимальная его концентрация - на высоте 20-25 км. В стратосфере температура воздуха начинает повышаться и достигает отметки +0,8° C. Это обусловлено тем, что озоновый слой взаимодействует с ультрафиолетовым излучением.

. Стратопауза - невысокий промежуточный слой между стратосферой и следующей за ней мезосферой.

. Мезосфера - верхняя граница этого слоя - 80-85 километров. Здесь происходят сложные фотохимические процессы с участием свободных радикалов. Именно они обеспечивают то нежное голубое сияние нашей планеты, которое видится из космоса.

В мезосфере сгорает большинство комет и метеоритов.

. Мезопауза - следующий промежуточный слой, температура воздуха в котором минимум -90°.

. Термосфера - нижняя граница начинается на высоте 80 - 90 км, а верхняя граница слоя проходит приблизительно по отметке 800 км. Температура воздуха возрастает. Она может варьироваться от +500° C до +1000° C. В течение суток температурные колебания составляют сотни градусов! Но воздух здесь настолько разрежен, что понимание термина "температура" как мы его представляем, здесь не уместно.

. Ионосфера - объединяет мезосферу, мезопаузу и термосферу. Воздух здесь состоит в основном из молекул кислорода и азота, а также из квазинейтральной плазмы. Солнечные лучи, попадая в ионосферу сильно ионизируют молекулы воздуха. В нижнем слое (до 90 км) степень ионизация низкая. Чем выше, тем больше ионизация. Так, на высоте 100-110 км электроны концентрируются. Это способствует отражению коротких и средних радиоволн.

Самый важный слой ионосферы - верхний, который находится на высоте 150-400 км. Его особенность в том, что он отражает радиоволны, а это способствует передаче радиосигналов на значительные расстояния.

Именно в ионосфере происходят такое явление, как полярное сияние.

. Экзосфера - состоит из атомов кислорода, гелия и водорода. Газ в этом слое очень разрежен и нередко атомы водорода ускользают в космическое пространство. Поэтому этот слой и называют "зоной рассеивания".

Первым ученым, который предположил, что наша атмосфера имеет вес, был итальянец Э. Торричелли. Остап Бендер, например, в романе "Золотой теленок" сокрушался, что на каждого человека давит воздушный столб весом в 14 кг! Но великий комбинатор немного ошибался. Взрослый человек испытывает на себя давление в 13-15 тонн! Но мы не чувствуем этой тяжести, потому что атмосферное давление уравновешивается внутренним давлением человека. Вес нашей атмосферы составляет 5 300 000 000 000 000 тонн. Цифра колоссальная, хотя это всего лишь миллионная часть веса нашей планеты.

Оговоримся сразу, азот в воздухе занимает большую часть, однако и химический состав оставшейся доли весьма интересен и разнообразен. Если коротко, то список основных элементов выглядит следующим образом.

Однако дадим и небольшие пояснения по функциям этих химических элементов.

1. Азот

Содержание азота в воздухе – 78% по объему и 75% по массе, то есть этот элемент доминирует в атмосфере, имеет звание одного из самых распространенных на Земле, и, кроме того, содержится и за пределами зоны обитания человека – на Уране, Нептуне и в межзвездных пространствах. Итак, сколько азота в воздухе, мы уже разобрались, остался вопрос о его функции. Азот необходим для существования живых существ, он входит в состав:

  • белков;
  • аминокислот;
  • нуклеиновых кислот;
  • хлорофилла;
  • гемоглобина и др.

В среднем около 2% живой клетки составляют как раз атомы азота, что объясняет, зачем столько азота в воздухе в процентах объема и массы.
Азот также является одним из инертных газов, добываемых из атмосферного воздуха. Из него синтезируют аммиак, используют для охлаждения и в других целях.

2. Кислород

Содержание кислорода в воздухе – один из самых популярных вопросов. Сохраняя интригу, отвлечемся на один забавный факт: кислород открыли дважды – в 1771 и 1774 годах, однако из-за разницы в публикациях открытия, почести открытия элемента достались английскому химику Джозефу Пристли, который фактически выделил кислород вторым. Итак, доля кислорода в воздухе колеблется около 21% по объему и 23% по массе. Вместе с азотом эти два газа образуют 99% всего земного воздуха. Однако процент кислорода в воздухе меньше, чем азота, и при этом мы не испытываем проблем с дыханием. Дело в том, что количество кислорода в воздухе оптимально рассчитано именно для нормального дыхания, в чистом виде этот газ действует на организм подобно яду, приводит к затруднениям в работе нервной системы, сбоям дыхания и кровообращения. При этом недостаток кислорода также негативно сказывается на здоровье, вызывая кислородное голодание и все связанные с ним неприятные симптомы. Поэтому сколько кислорода в воздухе содержится, столько и нужно для здорового полноценного дыхания.

3. Аргон

Аргон в воздухе занимает третье место, он не имеет запаха, цвета и вкуса. Значимой биологической роли этого газа не выявлено, однако он обладает наркотическим эффектом и даже считается допингом. Добытый из атмосферы аргон используют в промышленности, медицине, для создания искусственной атмосферы, химического синтеза, пожаротушения, создания лазеров и пр.

4. Углекислый газ

Углекислый газ составляет атмосферу Венеры и Марса, его процент в земном воздухе куда ниже. При этом огромное количество углекислоты содержится в океане, он регулярно поставляется всеми дышащими организмами, выбрасывается за счет работы промышленности. В жизни человека углекислый газ используется в пожаротушении, пищевой промышленности как газ и как пищевая добавка Е290 – консервант и разрыхлитель. В твердом виде углекислота – один из самых известных хладагентов «сухой лед».

5. Неон

Тот самый загадочный свет дискотечных фонарей, яркие вывески и современные фары используют пятый по распространенности химический элемент, который также вдыхает человек – неон. Как и многие инертные газы, неон оказывает на человека наркотическое действие при определенном давлении, однако именно этот газ используют в подготовке водолазов и других людей, работающих при повышенном давлении. Также неоново-гелиевые смеси используются в медицине при расстройствах дыхания, сам неон используют для охлаждения, в производстве сигнальных огней и тех самых неоновых ламп. Однако, вопреки стереотипу, неоновый свет не синий, а красный. Все остальные цвета дают лампы с другими газами.

6. Метан

Метан и воздух имеют очень древнюю историю: в первичной атмосфере, еще до появления человека, метан был в куда большем количестве. Сейчас этот газ, добываемый и используемый как топливо и сырье в производстве, не так широко распространен в атмосфере, но по-прежнему выделяется из Земли. Современные исследования устанавливают роль метана в дыхании и жизнедеятельности организма человека, однако авторитетных данных на этот счет пока нет.

7. Гелий

Посмотрев, сколько гелия в воздухе, любой поймет, что этот газ не относится к числу первостепенных по важности. Действительно, сложно определить биологическое значение этого газа. Не считая забавного искажения голоса при вдыхании гелия из шарика 🙂 Однако гелий широко применяется в промышленности: в металлургии, пищевой промышленности, для наполнения воздухоплавающих судов и метеорологических зондов, в лазерах, ядерных реакторах и т.д.

8. Криптон

Речь не идет о родине Супермена 🙂 Криптон – инертный газ, который в три раза тяжелее воздуха, химически инертен, добывается из воздуха, используется в лампах накаливания, лазерах и все еще активно изучается. Из интересных свойств криптона стоит отметить, что при давлении в 3,5 атмосферы он оказывает наркотический эффект на человека, а при 6 атмосферах приобретает резкий запах.

9. Водород

Водород в воздухе занимает 0,00005% по объему и 0,00008% по массе, но при этом именно он – самый распространенный элемент во Вселенной. О его истории, производстве и применении вполне можно написать отдельную статью, поэтому сейчас ограничимся небольшим списком отраслей: химическая, топливная, пищевая промышленности, авиация, метеорология, электроэнергетика.

10. Ксенон

Последний в составе воздуха, изначально и вовсе считавшийся только примесью к криптону. Его название переводится как «чужой», а процент содержания и на Земле, и за ее пределами минимальный, что обусловило его высокую стоимость. Сейчас без ксенона не обходятся: производство мощных и импульсных источников света, диагностика и наркоз в медицине, двигатели космических аппаратов, ракетное топливо. Кроме того, при вдыхании ксенон значительно понижает голос (обратный эффект гелию), а с недавнего времени вдыхание этого газа причислено к списку допингов.