Химическая наука. Химия

ХИМИЯ. РАЗДЕЛЫ
Химию довольно произвольно делят на несколько разделов, которые нельзя четко отграничить ни от других областей химии, ни от других наук (физики, геологии, биологии).
Неорганическая химия занимается изучением химической природы элементов и их соединений, за исключением большинства соединений углерода
(см. также
ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ ;
ВОДОРОД ;
АЗОТ ;
КИСЛОРОД ;
ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ).
Органическая химия изучает соединения, состоящие в основном из углерода и водорода. Поскольку атомы углерода могут соединяться друг с другом с образованием колец и длинных цепочек, как линейных, так и разветвленных, таких соединений существует сотни тысяч. Из органических соединений состоят уголь и нефть, они составляют основу живых организмов. Химики-органики научились получать из угля, нефти, растительных материалов синтетические волокна, пестициды, красители, лекарства, пластики и множество других полезных вещей
(см. также
УГЛЕРОД ;
ХИМИЯ ОРГАНИЧЕСКАЯ ;
КРАСИТЕЛИ И КРАШЕНИЕ ;
ТЕКСТИЛЬ ;
ПЛАСТМАССЫ ;
КАУЧУК И РЕЗИНА).
Радиохимия - это наука о химическом воздействии высокоэнергетического излучения на вещества; она занимается также изучением поведения радиоактивных изотопов (см. также ИЗОТОПЫ ; РАДИОАКТИВНОСТЬ).
Физическая химия использует физические методы для изучения химических систем. Большое место в ней занимают вопросы энергетики химических процессов; соответствующий раздел химии называется химической термодинамикой. К важнейшим направлениям относятся химическая кинетика и строение молекул. Электрохимия изучает химические процессы, протекающие под действием электрического тока, а также способы получения электричества химическими методами. Среди других направлений следует отметить коллоидную химию (она занимается исследованием поведения дисперсных систем), химию поверхностных явлений, статистическую механику.
См. также
ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА ;
ХИМИЯ КОЛЛОИДНАЯ ;
ХИМИЯ ФИЗИЧЕСКАЯ ;
ХИМИЯ ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ ;
ЭЛЕКТРОХИМИЯ ;
ФОТОХИМИЯ .
Аналитическая химия - старейшая область химии. Она занимается разложением сложных веществ на более простые, анализом самих веществ и их составляющих. Сегодня в ней широко используются сложное физическое оборудование и компьютеры, позволяющие автоматизировать рутинные процессы, сбор и обработку данных.
См. также ХИМИЯ АНАЛИТИЧЕСКАЯ .
Биохимия изучает сложнейшие химические процессы, протекающие в живых организмах. Биохимик должен детально знать органическую химию, владеть многими химическими и физическими методами анализа. К биохимии примыкают биофизика и молекулярная биология.
См. также
БИОХИМИЯ ;
БИОФИЗИКА ;
МОЛЕКУЛЯРНАЯ БИОЛОГИЯ . Геохимия занимается исследованием химических процессов, протекающих в земной коре. Она изучает образование минералов, метаморфоз скальных пород, образование нефти, пересекается с органической химией и биохимией, а также физикой и физической химией.
См. также
ГЕОЛОГИЯ ;
МИНЕРАЛЫ И МИНЕРАЛОГИЯ ;
НЕФТЬ И ГАЗ .

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ХИМИЯ. РАЗДЕЛЫ" в других словарях:

    - (С1 химия) раздел химии, изучающей различные классы веществ, в состав молекулы которых входит только один атом углерода. Как отдельная отрасль знаний С1 химия появляется с развитием перспективных технологий получения углеродсодержащего сырья,… … Википедия

    Наука о химических элементах, их соединениях и превращениях, происходящих в результате химических реакций. Она изучает, из каких веществ состоит тот или иной предмет; почему и как ржавеет железо, и почему олово не ржавеет; что происходит с пищей… … Энциклопедия Кольера

    Химия почв это раздел почвоведения, изучающий химические основы почвообразования и плодородия почв. Основой для решения этих вопросов служит исследование состава, свойств почв и протекающих в почвах процессов на ионно молекулярном и… … Википедия

    Химия полимеров один из перспективных и успешно развивающихся разделов химической науки. Делится на разделы: физическая химия полимеров, структурная и т. д. Благодаря успешному развитию химии полимеров создаются новые материалы, нашедшие… … Википедия

    - (греч. chymeia, от chymos сок). Отрасль естествоведения, исследующая природу и свойства простых тел, частичное влияние этих тел друг на друга и соединения, являющиеся следствием этого влияния. Словарь иностранных слов, вошедших в состав русского… … Словарь иностранных слов русского языка

    - – раздел физической химии, подразумевающий изучение физического и химического строения, структуры, состава, физических и химических свойств веществ, в основе которых лежит кремний, в сочетании с кислородом и другими элементами на 90 %… … Википедия

    Химия твёрдого тела раздел химии, изучающий разные аспекты твердофазных веществ, в частности, их синтез, структуру, свойства, применение и др.. Ее объектами исследования являются кристаллические и аморфные, неорганические и органические… … Википедия

    У этого термина существуют и другие значения, см. Химия (значения). Химия (от араб. کيمياء‎‎, произошедшего, предположительно, от египетского слова km.t (чёрный), откуда возникло также название Египта, чернозёма и свинца «черная… … Википедия

    Не следует путать с Экологическая химия. Химия окружающей среды раздел химии, изучающий химические превращения, происходящие в окружающей природной среде. Основные сведения Химия окружающей среды включает в себя более узкие разделы химии,… … Википедия

    Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей … Википедия

Книги

  • Химия. Учебник и практикум для академического бакалавриата , Никольский А.Б.. В учебнике, предназначенном для студентов академического бакалавриата, подробно изложены все основные разделы химии. Рассмотрены положения общей химии, фактический материал неорганической и…

ХИМИЯ

наука, изучающая строение в-в и их превращения, сопровождающиеся изменением состава и(или) строения. Хим. св-ва в-в (их превращения; см. Реакции химические )определяются гл. обр. состоянием внеш. электронных оболочек атомов и молекул, образующих в-ва; состояния ядер и внутр. электронов в хим. процессах почти не изменяются. Объектом хим. исследований являются элементы химические и их комбинации, т. е. атомы, простые (одноэлементные) и сложные (молекулы, ион-радикалы, карбены, свободные радикалы) хим. соед., их объединения (ассоциаты, сольваты, и т. п.), материалы и др. Число хим. соед. огромно и все время увеличивается; поскольку X. сама создает свой объект; к кон. 20 в. известно ок. 10 млн. хим. соединений.
X. как наука и отрасль пром-сти существует недолго (ок. 400 лет). Однако хим. знание и хим. практика (как ремесло) прослеживаются в глубинах тысячелетий, а в примитивной форме они появились вместе с человеком разумным в процессе его взаимод. с окружающей средой. Поэтому строгая дефиниция X. может основываться на широком, вневременном универсальном смысле - как области естествознания и человеческой практики, связанной с хим. элементами и их комбинациями.
Слово "химия" происходит либо от наименования Древнего Египта "Хем" ("темный", "черный" - очевидно, по цвету почвы в долине реки Нил; смысл же назв.- "египетская наука"), либо от древнегреч. chemeia - искусство выплавки металлов. Совр. назв. X. производится от позднелат. chimia и является интернациональным, напр. нем. Chemie, франц. chimie, англ. chemistry. Термин "X." впервые употребил в 5 в. греч. алхимик Зосима.

История химии. Как основанная на опыте практика, X. возникла вместе с зачатками человеческого общества (использование огня, приготовление пищи, дубление шкур) и в форме ремесел рано достигла изощренности (получение красок и эмалей, ядов и лекарств). Вначале человек использовал хим. изменения биол. объектов ( , гниение), а с полным освоением огня и горения - хим. процессы спекания и сплавления (гончарное и стекольное произ-ва), выплавку металлов. Состав древнеегипетского стекла (4 тыс. лет до н. э.) существенно не отличается от состава совр. бутылочного стекла. В Египте уже за 3 тыс. лет до н. э. выплавляли в больших кол-вах , используя уголь в качестве восстановителя (самородная медь применялась с незапамятных времен). Согласно клинописным источникам, развитое произ-во железа, меди, серебра и свинца существовало в Месопотамии также за 3 тыс. лет до н. э. Освоение хим. процессов произ-ва меди и , а затем и железа являлось ступенями эволюции не только металлургии, но цивилизации в целом, изменяло условия жизни людей, влияло на их устремления.
Одновременно возникали и теоретич. обобщения. Напр., китайские рукописи 12 в. до н. э. сообщают о "теоретич." построениях систем "основных элементов" ( , огонь, дерево, и земля); в Месопотамии родилась идея рядов пар противоположностей, взаимод. к-рых "составляют мир": мужское и женское, тепло и холод, влага и сухость и т. д. Очень важной была идея (астрологич. происхождения) единства явлений макрокосма и микрокосма.
К концептуальным ценностям относится и атомистич. учение, к-рое было развито в 5 в. до н. э. древнегреч. философами Левкиппом и Демокритом. Они предложили аналоговую семантич. модель строения в-ва, имеющую глубокий комбинаторный смысл: комбинации по определенным правилам небольшого числа неделимых элементов (атомов и букв) в соединения (молекулы и слова) создают информационное богатство и разнообразие (в-ва и языки).
В 4 в. до н. э. Аристотель создал хим. систему, основанную на "принципах": сухость - и холод - тепло, с помощью попарных комбинаций к-рых в "первичной материи" он выводил 4 основных элемента (земля, вода и огонь). Эта система почти без изменений просуществовала 2 тыс. лет.
После Аристотеля лидерство в хим. знании постепенно перешло из Афин в Александрию. С этого времени создаются рецептуры получения хим. в-в, возникают "учреждения" (как храм Сераписа в Александрии, Египет), занимающиеся деятельностью, к-рую позже арабы назовут "аль-химия".
В 4-5 вв. хим. знание проникает в Малую Азию (вместе с несторианством), в Сирии возникают философские школы, транслировавшие греч. натурфилософию и передавшие хим. знание арабам.
В 3-4 вв. возникла алхимия - философское и культурное течение, соединяющее мистику и магию с ремеслом и искусством. Алхимия внесла значит. вклад в лаб. мастерство и технику, получение многих чистых хим. в-в. Алхимики дополнили элементы Аристотеля 4 началами (масло, влажность, и сера); комбинации этих мистич. элементов и начал определяли индивидуальность каждого в-ва. Алхимия оказала заметное влияние на формирование западноевропейской культуры (соединение рационализма с мистикой, познания с созиданием, специфич. культ золота), но не получила распространения в др. культурных регионах.
Джабир ибн Хайян, или по-европейски Гебер, Ибн Сина (Авиценна), Абу-ар-Рази и др. алхимики ввели в хим. обиход (из мочи), порох, мн. , NaOH, HNO 3 . Книги Гебера, переведенные на латынь, пользовались огромной популярностью. С 12 в. арабская алхимия начинает терять практич. направленность, а с этим и лидерство. Проникая через Испанию и Сицилию в Европу, она стимулирует работу европейских алхимиков, самыми известными из к-рых были Р. Бэкон и Р. Луллий. С 16 в. развивается практич. европейская алхимия, стимулированная потребностями металлургии (Г. Агрикола) и медицины (Т. Парацельс). Последний основал фармакологич. отрасль химии - ятрохимиюи вместе с Агриколой выступал фактически как первый реформатор алхимии.
X. как наука возникла в ходе научной революции 16-17 вв., когда в Западной Европе возникла новая цивилизация в результате череды тесно связанных революций: религиозной (Реформация), давшей новое толкование богоугодности земных дел; научной, давшей новую, механистич. картину мира (гелиоцентризм, бесконечность, подчиненность естественным законам, описание на языке математики); промышленной (возникновение фабрики как системы машин с использованием энергии ископаемого ); социальной (разрушение феодального и становление буржуазного общества).
X., вслед за физикой Г. Галилея и И. Ньютона, могла стать наукой лишь на пути механицизма, к-рый задал основные нормы и идеалы науки. В X. это было гораздо сложнее, чем в физике. Механика легко абстрагируется от особенностей индивидуального объекта. В X. каждый частный объект (в-во) - индивидуальность, качественно отличная от других. X. не могла выразить свой предмет чисто количественно и на всем протяжении своей истории оставалась мостом между миром количества и миром качества. Однако надежды антимеханицистов (от Д. Дидро до В. Оствальда) на то, что X. заложит основы иной, немеханистич. науки, не оправдались, и X. развивалась в рамках, определенных ньютоновской картиной мира.
Более двух веков X. вырабатывала представление о материальной природе своего объекта. Р. Бойль, заложивший основы рационализма и эксперим. метода в X., в своем труде "Химик-скептик" (1661) развил представления о хим. атомах (корпускулах), различия в форме и массе к-рых объясняют качества индивидуальных в-в. Атомистич. представления в X. подкреплялись идеологич. ролью атомизма в европейской культуре: человек-атом - модель человека, положенная в основу новой социальной философии.
Металлургич. X., имевшая дело с р-циями горения, окисления и восстановления, кальцинации - прокаливания металлов (X. называли пиротехнией, т. е. огненным искусством) -привлекла внимание к образующимся при этом газам. Я. ван Гельмонт, введший понятие "газ" и открывший (1620), положил начало пневматич. химии. Бойль в работе "Огонь и пламя, взвешенные на весах" (1672), повторяя опыты Ж. Рея (1630) по увеличению массы металла при обжиге, пришел к выводу, что это происходит за счет "захвата металлом весомых частиц пламени". На границе 16-17 вв. Г. Шталь формулирует общую теорию X. - теорию флогистона (теплорода, т. е. "в-ва горючести", удаляющегося с помощью воздуха из в-в при их горении), к-рая освободила X. от продержавшейся 2 тыс. лет системы Аристотеля. Хотя М. В. Ломоносов, повторив опыты по обжигу, открыл закон сохранения массы в хим. р-циях (1748) и смог дать правильное объяснение процессам горения и окисления как взаимод. в-ва с частицами воздуха (1756), познание горения и окисления было невозможно без развития пневматич. химии. В 1754 Дж. Блэк открыл (повторно) углекислый газ ("фиксированный воздух"); Дж. Пристли (1774) - , Г. Кавендиш (1766) - ("горючий воздух"). Эти открытия дали всю информацию, необходимую для объяснения процессов горения, окисления и дыхания, что и сделал А. Лавуазье в 1770-90-х гг., фактически похоронив этим теорию флогистона и стяжав себе славу "отца современной X.".
К нач. 19 в. пневматохимия и исследования состава в-в приблизили химиков к пониманию того, что хим. элементы соединяются в определенных, эквивалентных соотношениях; были сформулированы законы постоянства состава (Ж. Пруст, 1799-1806) и объемных отношений (Ж. Гей-Люс-сак, 1808). Наконец, Дж. Дальтон, наиб. полно изложивший свою концепцию в сочинении "Новая система химической философии" (1808-27), убедил современников в существовании атомов, ввел понятие атомного веса (массы) и возвратил к жизни понятие элемента, но уже в совсем ином смысле -как совокупности атомов одного вида.
Гипотеза А. Авогадро (1811, принята научным сообществом под влиянием С. Канниццаро в 1860) о том, что частицы простых газов представляют собой молекулы из двух одинаковых атомов, разрешила целый ряд противоречий. Картина материальной природы хим. объекта была завершена с открытием периодич. закона хим. элементов (Д. И. Менделеев, 1869). Он связал количеств. меру () с качеством (хим. св-ва), вскрыл смысл понятия хим. элемент, дал химику теорию большой предсказательной силы. X. стала совр. наукой. Периодич. закон узаконил собственное место X. в системе наук, разрешив подспудный конфликт хим. реальности с нормами механицизма.
Одновременно шел поиск причин и сил хим. взаимодействия. Возникла дуалистич. (электрохим.) теория (И. Берцелиус, 1812-19); введены понятия " " и "хим. связь", к-рые наполнились физ. смыслом с развитием теории строения атома и квантовой X. Им предшествовали интенсивные исследования орг. в-в в 1-й пол. 19 в., приведшие к разделению X. на 3 части: неорганическая химия, органическая химия и аналитическая химия (до 1-й пол. 19 в. последняя была основным разделом X.). Новый эмпирич. материал (р-ции замещения) не укладывался в теорию Берцелиуса, поэтому были введены представления о группах атомов, действующих в р-циях как целое - радикалах (Ф. Вёлер, Ю. Либих, 1832). Эти представления были развиты Ш. Жераром (1853) в теорию типов (4 типа), ценность к-рой состояла в том, что она легко связывалась с концепцией валентности (Э. Франкленд, 1852).
В 1-й пол. 19 в. было открыто одно из важнейших явлений X. - катализ (сам термин предложен Берцелиусом в 1835), очень скоро нашедшее широкое практич. применение. В сер. 19 в. наряду с важными открытиями таких новых в-в (и классов), как и красители (В. Перкин, 1856), были выдвинуты важные для дальнейшего развития X. концепции. В 1857-58 Ф. Кекуле развил теорию валентности применительно к орг. в-вам, установил четырехвалентность углерода и способность его атомов связываться друг с другом. Этим был проложен путь теории хим. строения орг. соед. (структурной теории), построенной А. М. Бутлеровым (1861). В 1865 Кекуле объяснил природу ароматич. соед. Я. Вант-Гофф и Ж. Ле Бель, постулировав тетраэдрич. структуры (1874), проложили путь трехмерному взгляду на структуру в-ва, заложив основы стереохимии как важного раздела Х.
В сер. 19 в. одновременно было положено начало исследованиям в области кинетики химической и термохимии. Л. Вильгельми изучил кинетику гидролиза углеводов (впервые дав ур-ние скорости гидролиза; 1850), а К. Гульдберг и П. Вааге в 1864-67 сформулировали закон действующих масс. Г. И. Гесс в 1840 открыл основной закон термохимии, М. Бертло и В. Ф. Лугинин исследовали теплоты мн. р-ций. В это же время развиваются работы по коллоидной химии, фотохимии и электрохимии, начало к-рым было положено еще в 18 в.
Работами Дж. Гиббса, Вант-Гоффа, В. Нернста и др. создается химическая . Исследования электропроводности р-ров и электролиза привели к открытию электролитич. диссоциации (С. Аррениус, 1887). В этом же году Оствальд и Вант-Гофф основали первый журнал, посвященный физической химии, и она оформилась как самостоятельная дисциплина. К сер. 19 в. принято относить зарождение агрохимии и биохимии, особенно в связи с пионерскими работами Либиха (1840-е гг.) по изучению ферментов, белков и углеводов.
19 в. по праву м. б. назван веком открытий хим. элементов. За эти 100 лет было открыто более половины (50) существующих на Земле элементов. Для сравнения: в 20 в. открыто 6 элементов, в 18 в.- 18, ранее 18 в.- 14.
Выдающиеся открытия в физике в кон. 19 в. (рентгеновские лучи, электрон) и развитие теоретич. представлений (квантовая теория) привели к открытию новых (радиоактивных) элементов и явления изотопии, возникновению радиохимии и квантовой химии, новым представлениям о строении атома и о природе хим. связи, дав начало развитию совр. X. (химии 20 в.).
Успехи X. 20 в. связаны с прогрессом аналит. X. и физ. методов изучения в-в и воздействия на них, проникновением в механизмы р-ций, с синтезом новых классов в-в и новых материалов, дифференциацией хим. дисциплин и интеграцией X. с другими науками, с удовлетворением потребностей совр. пром-сти, техники и технологии, медицины, строительства, сельского хозяйства и др. сфер человеческой деятельности в новых хим. знаниях, процессах и продуктах. Успешное применение новых физ. методов воздействия привело к формированию новых важных направлений X., напр. радиационной химии, плазмохимии. Вместе с X. низких температур ( криохимией )и X. высоких давлений (см. Давление), сонохимией (см. Ультразвук), лазерной химией и др. они стали формировать новую область - X. экстремальных воздействий, играющую большую роль в получении новых материалов (напр., для электроники) или старых ценных материалов сравнительно дешевым синтетич. путем (напр., алмазов или нитридов металлов).
На одно из первых мест в X. выдвигаются проблемы предсказания функциональных св-в в-ва на основе знания его структуры и определения структуры в-ва (и его синтез), исходя из его функционального назначения. Решение этих проблем связано с развитием расчетных квантово-хим. методов и новых теоретич. подходов, с успехами в неорг. и орг. синтезе. Развиваются работы по генной инженерии и по синтезу соед. с необычными строением и св-вами (напр., высокотемпературные сверхпроводники, ). Все шире применяются методы, основанные на матричном синтезе, а также использующие идеи планарной технологии. Получают дальнейшее развитие методы, моделирующие биохим. р-ции. Успехи спектроскопии (в т. ч. сканирующей туннельной) открыли перспективы "конструирования" в-в на мол. уровне, привели к созданию нового направления в X. - т. наз. нанотехнологии. Для управления хим. процессами как в лаб., так и в пром. масштабе, начинают использоваться принципы мол. и надмол. организации ансамблей реагирующих молекул (в т. ч. подходы, основанные на термодинамике иерархических систем).
Химия как система знания о в-вах и их превращениях. Это знание содержится в запасе фактов - надежно установленных и проверенных сведений о хим. элементах и соед., их р-циях и поведении в природных и искусств. средах. Критерии надежности фактов и способы их систематизации постоянно развиваются. Крупные обобщения, надежно связывающие большие совокупности фактов, становятся научными законами, формулировка к-рых открывает новые этапы X. (напр., законы сохранения массы и энергии, законы Дальтона, периодич. закон Менделеева). Теории, используя специфич. понятия, объясняют и прогнозируют факты более частной предметной области. По сути, опытное знание становится фактом только тогда, когда получает теоретич. толкование. Так, первая хим. теория - теория флогистона, будучи неверной, способствовала становлению X., т. к. соединяла факты в систему и позволяла формулировать новые вопросы. Структурная теория (Бутлеров, Кекуле) упорядочила и объяснила огромный материал орг. X. и обусловила быстрое развитие хим. синтеза и исследования структуры орг. соединений.
X. как знание - система очень динамичная. Эволюционное накопление знаний прерывается революциями - глубокой перестройкой системы фактов, теорий и методов, с возникновением нового набора понятий или даже нового стиля мышления. Так, революцию вызвали труды Лавуазье (матери-алистич. теория окисления, внедрение количеств. методов эксперимента, разработка хим. номенклатуры), открытие периодич. закона Менделеева, создание в нач. 20 в. новых аналит. методов (микроанализ, ). Революцией можно считать и появление новых областей, вырабатывающих новое видение предмета X. и влияющих на все ее области (напр., возникновение физ. X. на базе хим. термодинамики и хим. кинетики).
Хим. знание обладает развитой структурой. Каркас X. составляют основные хим. дисциплины, сложившиеся в 19 в.: аналит., неорг., орг. и физ. X. В дальнейшем в ходе эволюции структуры А. образовалось большое число новых дисциплин (напр., кристаллохимия), а также новая инженерная отрасль - химическая технология.
На каркасе дисциплин вырастает большая совокупность исследовательских областей, часть из к-рых входит в ту или иную дисциплину (напр., X. элементоорг. соед.- часть орг. X.), другие носят многодисциплинарный характер, т. е. требуют объединения в одном исследовании ученых из разных дисциплин (напр., исследование структуры биополимеров с использованием комплекса сложных методов). Третьи являются междисциплинарными, т. е. требуют подготовки специалиста нового профиля (напр., X. нервного импульса).
Поскольку почти вся практич. деятельность людей связана с применением материи как в-ва, хим. знание необходимо во всех областях науки и технологии, осваивающих материальный мир. Поэтому сегодня X. стала, наравне с математикой, хранилищем и генератором такого знания, к-рое "пропитывает" почти всю остальную науку. То есть, выделяя X. как совокупность областей знания, можно говорить и о хим. аспекте большинства других областей науки. На "границах" X. существует множество гибридных дисциплин и областей.
На всех этапах развития как науки X. испытывает мощное воздействие физ. наук - сначала ньютоновской механики, потом термодинамики, атомной физики и квантовой механики. Атомная физика дает знание, входящее в фундамент X., раскрывает смысл периодич. закона, помогает понять закономерности распространенности и распределения хим. элементов во Вселенной, чему посвящены ядерная астрофизика и космохимия.
Фундам. влияние оказала на X. термодинамика, устанавливающая принципиальные ограничения на возможность протекания хим. р-ций (хим. термодинамика). X., весь мир к-рой был изначально связан с огнем, быстро освоила термодинамич. способ мышления. Вант-Гофф и Аррениус связали с термодинамикой исследование скорости р-ций (кинетику) -X. получила совр. способ изучения процесса. Изучение хим. кинетики потребовало привлечения многих частных физ. дисциплин для понимания процессов переноса в-в (см., напр., Диффузия, Массообмен ).Расширение и углубление математизации (напр., применение мат. моделирования, графов теории )позволяет говорить о формировании мат. X. (ее предсказал Ломоносов, назвав одну из своих книг "Элементы математической химии").

Язык химии. Система информации. Предмет X.- элементы и их соед., хим. взаимод. этих объектов - обладает огромным и быстро растущим разнообразием. Соответственно сложен и динамичен язык л. Его словарь включает назв. элементов, соединений, хим. частиц и материалов, а также понятия, отражающие структуру объектов и их взаимодействие. Язык X. имеет развитую морфологию - систему префиксов, суффиксов и окончаний, позволяющих выразить качественное многообразие хим. мира с большой гибкостью (см. Номенклатура химическая). Словарь X. переведен на язык символов (знаков, ф-л, ур-ний), к-рые позволяют заменить текст очень компактным выражением или зрительным образом (напр., пространств. модели). Создание научного языка X. и способа записи информации (прежде всего на бумаге) - один из великих интеллектуальных подвигов европейской науки. Международное сообщество химиков сумело наладить конструктивную всемирную работу в столь противоречивом деле, как выработка терминологии, классификации и номенклатуры. Было найдено равновесие между обыденным языком, историческими (тривиальными) названиями хим. соединений и их строгими формульными обозначениями. Создание языка X.- удивительный пример сочетания очень высокой мобильности и прогресса с устойчивостью и преемственностью (консерватизмом). Совр. хим. язык позволяет очень коротко и однозначно записывать огромный объем информации и обмениваться ею между химиками всего мира. Созданы машиночитаемые версии этого языка. Многообразие объекта X.и сложность языка делают информационную систему X. наиб. крупной и изощренной во всей науке. Ее основу составляют химические журналы, а также монографии, учебники, справочники. Благодаря рано возникшей в X. традиции международной координации, более века назад сложились нормы описания хим. в-в и хим. р-ций и положено начало системы периодически пополняющихся указателей (напр., указатель орг. соед. Бейльштейна; см. также Химические справочники и энциклопедии). Огромные масштабы хим. литературы уже 100 лет назад побудили искать способы ее "сжатия". Возникли реферативные журналы (РЖ); после 2-й мировой войны в мире издавалось два максимально полных РЖ: "Chemical Abstracts" и "РЖ Химия". На базе РЖ развиваются автоматизир. информационно-поисковые системы.

Химия как социальная система - крупнейшая часть всего сообщества ученых. На формирование химика как типа ученого оказали влияние особенности объекта его науки и способа деятельности (хим. эксперимента). Трудности мат. формализации объекта (по сравнению с физикой) и в то же время многообразие чувственных проявлений (запах, цвет, биол. и др. ) с самого начала ограничивали господство механицизма в мышлении химика и оставляли значит. поле для интуиции и артистизма. Кроме того, химик всегда применял инструмент немеханич. природы - огонь. С другой стороны, в отличие от устойчивых, данных природой объектов биолога, мир химика обладает неисчерпаемым и быстро нарастающим многообразием. Неустранимая таинственность нового в-ва придала мироощущению химика ответственность и осторожность (как социальный тип химик консервативен). Хим. лаборатория выработала жесткий механизм "естественного отбора", отторжения самонадеянных и склонных к ошибкам людей. Это придает своеобразие не только стилю мышления, но и духовно-нравственной организации химика.
Сообщество химиков состоит из людей, профессионально занимающихся X. и относящих самих себя к этой области. Примерно половина из них работает, однако, в других областях, обеспечивая их хим. знанием. Кроме того, к ним примыкает множество ученых и технологов - в большой мере химиков, хотя уже и не относящих себя к химикам (освоение навыков и умений химика учеными других областей затруднено из-за указанных выше особенностей предмета).
Как и любое другое сплоченное сообщество, химики имеют свой профессиональный язык, систему воспроизводства кадров, систему коммуникаций [журналы, конгрессы и т. д.], свою историю, свои культурные нормы и стиль поведения.

Методы исследования. Особая область хим. знания - методы хим. эксперимента (анализа состава и структуры, синтеза хим. в-в). А.- наиб. ярко выраженная эксперим. наука. Набор навыков и приемов, к-рыми должен владеть химик, очень широк, а комплекс методов быстро растет. Поскольку методы хим. эксперимента (особенно анализа) используются почти во всех областях науки, X. разрабатывает технологии для всей науки и объединяет ее методически. С другой стороны, X. проявляет очень высокую восприимчивость к методам, рожденным в др. областях (прежде всего физике). Ее методы носят в высшей степени междисциплинарный характер.
В исследоват. целях в X. используется огромный набор способов воздействия на в-во. Вначале это были термич., хим. и биол. воздействия. Затем добавились высокие и низкие давления, мех., магн. и электрич. воздействия, потоки ионов кэлементарных частиц, лазерное излучение и др. Сейчас все больше этих способов проникает в технологию произ-ва, что открывает новый важный канал связи науки с произ-вом.

Организации и учреждения. Хим. исследования - особый тип деятельности, выработавший соответствующую систему организаций и учреждений. Особым типом учреждения стала хим. лаборатория, устройство к-рой отвечает основным ф-ци-ям, выполняемым в коллективе химиков. Одну из первых лабораторий создал Ломоносов в 1748, на 76 лет раньше, чем хим. лаборатории появились в США. Пространств. строение лаборатории и ее оборудование позволяют хранить и использовать большое число приборов, инструментов и материалов, в т. ч. потенциально очень опасных и несовместимых между собой (легко воспламеняющихся, взрывчатых и ядовитых).
Эволюция методов исследования в X. привела к дифференциации лабораторий и выделению множества методич. лабораторий и даже приборных центров, к-рые специализируются на обслуживании большого числа коллективов химиков (анализы, измерения, воздействие на в-во, расчеты и т. д.). Учреждением, объединяющим работающие в близких областях лаборатории, с кон. 19 в. стал исследоват. ин-т (см. Химические институты). Очень часто хим. ин-т имеет опытное произ-во - систему полупром. установок для изготовления небольших партий в-в и материалов, их испытания и отработки технол. режимов.
Подготовка химиков ведется на хим. факультетах университетов или в специализир. высших учебных заведениях, к-рые отличаются от других большой долей практикума и интенсивным использованием демонстрационных опытов в теоретич. курсах. Разработка хим. практикумов и лекционных опытов - особый жанр хим. исследований, педагогики и во многом искусства. Начиная с сер. 20 в. подготовка химиков стала выходить за рамки вуза, охватывать более ранние возрастные группы. Возникли специализир. хим. средние школы, кружки и олимпиады. В СССР и России была создана одна из лучших в мире систем доинститутской хим. подготовки, развит жанр популярной хим. литературы.
Для хранения и передачи хим. знания существует сеть издательств, библиотек и информационных центров. Особый тип учреждений X. составляют национальные и международные органы управления и координации всей деятельностью в этой сфере - государственные и общественные (см., напр., Международный союз теоретической и прикладной химии).
Система учреждений и организаций X.- сложный организм, к-рый "выращивался" 300 лет и во всех странах рассматривается как большое национальное достояние. Лишь две страны в мире обладали целостной системой организации X. по структуре знания и по структуре ф-ций - США и СССР.

Химия и общество. X.- наука, диапазон отношений к-рой с обществом всегда был очень широк - от восхищения и слепой веры ("химизация всего народного хозяйства") до столь же слепого отрицания ("нитратный" бум) и хемофобии. На X. был перенесен образ алхимика - мага, скрывающего свои цели и обладающего непонятной силой. Яды и порох в прошлом, нервно-паралитич. и психотропные в-ва сегодня -эти инструменты власти обьщенное сознание ассоциирует с X. Поскольку хим. пром-сть является важным и необходимым компонентом экономики, хемофобия нередко сознательно разжигается в конъюнктурных целях (искусств. экологич. психозы).
На деле X. является системообразующим фактором совр. общества, т. е. совершенно необходимым условием его существования и воспроизводства. Прежде всего потому, что X. участвует в формировании совр. человека. Из его мировоззрения нельзя изъять видение мира через призму понятий X. Более того, в индустриальной цивилизации человек сохраняет свой статус члена общества (не маргинализуется) лишь в том случае, если достаточно быстро осваивает новые хим. представления (для чего служит целая система популяризации X.). Вся техносфера - искусственно созданный окружающий человека мир - все быстрее насыщается продуктами хим. произ-ва, обращение с к-рыми требует высокого уровня хим. знаний, навыков и интуиции.
В кон. 20 в. все более ощущается общее несоответствие обществ. ин-тов и обыденного сознания индустриального общества уровню химизации совр. мира. Это несоответствие породило цепь противоречий, ставших глобальной проблемой и создающих качественно новую опасность. На всех социальных уровнях, включая научное сообщество в целом, растет отставание уровня хим. знаний и навыков от хим. реальности техносферы и ее воздействия на биосферу. Хим. образование и воспитание в общей школе скудеет. Увеличивается пропасть между хим. подготовкой политиков и потенциальной опасностью неверных решений. Организация новой, адекватной реальности системы всеобщего хим. образования и освоение хим. культуры становится условием безопасности и устойчивого развития цивилизации. На время кризиса (к-рый обещает быть долгим) неизбежна переориентация приоритетов X.: от знания ради улучшения условий жизни к знанию ради гарантир. сохранения жизни (от критерия "максимизации выгоды" к критерию "минимизации ущерба").

Прикладная химия. Практическое, прикладное значение X. состоит в осуществлении контроля над хим. процессами, протекающими в природе и техносфере, в произ-ве и преобразовании нужных человеку в-в и материалов. В большинстве отраслей произ-ва вплоть до 20 в. доминировали процессы, унаследованные от ремесленного периода. X. раньше других наук стала порождать произ-ва, сам принцип к-рых был основан на научном знании (напр., синтез анилиновых красителей).
Состояние хим. пром-сти во многом определяло темпы и направление индустриализации и политич. ситуацию (как, напр., не предвиденное странами Антанты создание крупнотоннажного произ-ва аммиака и азотной кислоты Германией по методу Гебера - Боша, что обеспечило ей достаточное для ведения мировой войны кол-во взрывчатых в-в). Развитие пром-сти минер, удобрений, а затем и ср-в защиты растений резко повысило продуктивность сельского хозяйства, что стало условием урбанизации и быстрого развития индустрии. Замена техн. культур искусств. в-вами и материалами (ткани, красители, заменители жиров и др.) равноценно значит. увеличению продовольств. ресурсов и сырья для легкой пром-сти. Состояние и экономич. эффективность машиностроения и стр-ва все больше определяется разработкой и произ-вом синтетич. материалов (пластмасс, каучуков, пленок и волокон). Развитие новых систем связи, к-рые в ближайшем будущем кардинально изменят и уже начали менять облик цивилизации, определяется разработкой оптоволоконных материалов; прогресс телевидения, информатики и компьютеризации связан с разработкой элементной базы микроэлектроники и мол. электроники. В целом развитие техносферы во многом зависит сегодня от ассортимента и кол-ва выпускаемых хим. пром-стью продуктов. Качество многих хим. продуктов (напр., лакокрасочных материалов) влияет и на духовное благополучие населения, т. е. участвует в формировании высших ценностей человека.
Невозможно переоценить роль X. в развитии одной из важнейших проблем, стоящих перед человечеством,- защите окружающей среды (см. Охрана природы). Здесь задача X. состоит в разработке и усовершенствовании методов обнаружения и определения антропогенных загрязнений, изучении и моделировании хим. р-ций, протекающих в атмосфере, гидросфере и литосфере, создании безотходных или малоотходных хим. произ-в, разработке способов обезвреживания и утилизации пром. и бытовых отходов.

Лит.: Фнгуровский Н. А., Очерк общей истории химии, т. 1-2, М., 1969-79; Кузнецов В. И., Диалектика развития химии, М., 1973; Соловьев Ю. И., Трифонов Д. Н., Шамин А. Н., История химии. Развитие основных направлений современной химии, М., 1978; Джуа М., История химии, пер. с итал., М., 1975; Легасов В. А., Бучаченко А. Л., "Успехи химии", 1986, т. 55, в. 12, с. 1949-78; Фримантл М., Химия в действии, пер. с англ., ч. 1-2, М., 1991; Пиментел Дж., Кунрод Дж., Возможности химии сегодня и завтра, пер. с англ., М., 1992; Par ting ton J. R., A history of chemistry, v. 1-4, L.- N. Y., 1961-70. С.

Г. Кара-Мурза, Т. А. Айзатулин. Словарь иностранных слов русского языка

ХИМИЯ - ХИМИЯ, наука о веществах, их превращениях, взаимодействии и о происходящих при этом явлениях. Выяснением основных понятий, к рыми оперирует X., как напр, атом, молекула, элемент, простое тело, реакция и др., учением о молекулярных, атомных и… … Большая медицинская энциклопедия

- (возможно от греч. Chemia Хемия, одно из древнейших названий Египта), наука, изучающая превращения веществ, сопровождающиеся изменением их состава и (или) строения. Химические процессы (получение металлов из руд, крашение тканей, выделка кожи и… … Большой Энциклопедический словарь

ХИМИЯ, отрасль науки, изучающая свойства, состав и структуру веществ и их взаимодействие друг с другом. В настоящее время химия представляет собой обширную область знаний и подразделяется прежде всего на органическую и неорганическую химию.… … Научно-технический энциклопедический словарь

ХИМИЯ, химии, мн. нет, жен. (греч. chemeia). Наука о составе, строении, изменениях и превращениях, а также об образовании новых простых и сложных веществ. Химию, говорит Энгельс, можно назвать наукой о качественных изменениях тел, происходящих… … Толковый словарь Ушакова

химия - – наука о составе, строении, свойствах и превращениях веществ. Словарь по аналитической химии аналитическая химия коллоидная химия неорганическая химия … Химические термины

Совокупность наук, предмет к рых составляют соединения атомов и превращения этих соединений, происходящие с разрывом одних и образованием других межатомных связей. Различные химия, науки отличаются тем, что они занимаются либо разными классами… … Философская энциклопедия

химия - ХИМИЯ, и, ж. 1. Вредное производство. Работать на химии. Послать на химию. 2. Наркотические средства, таблетки и т. п. 3. Все ненатуральные, вредные продукты. Не колбаса химия одна. Сам ешь свою химию. 4. Разновидность причесок с химической… … Словарь русского арго

Наука * История * Математика * Медицина * Открытие * Прогресс * Техника * Философия * Химия Химия Кто не понимает ничего, кроме химии, тот и ее понимает недостаточно. Лихтенберг Георг (Lichtenberg) (

Чтобы понять суть той или иной науки, необходимо в первую очередь получать от познания удовольствие, открывая для себя что-то новое. В данном случае это химия. Поверьте, она может дать изучающему ее подлинное наслаждение. И это не просто аккумуляция знаний с сухим остатком фактов. За химическими превращениями очень интересно наблюдать, а наглядные примеры в лаборатории способны пробудить в ученике ярчайший интерес! Потому что химия - это основа основ всех веществ, тех, из которых создан мир, нас окружающий. Добро пожаловать в этот интересный мир!

Что изучает химия

Давайте разберемся, в чем же предмет изучения. Говоря по-простому, химия - это наука о веществе (а оно, как мы знаем, занимает объем и имеет определенную массу). Так вот, данная наука исследует строение и свойства веществ и все происходящие с ними изменения. Любое из них либо является чистым, или может состоять из смеси элементов. А превращение одного в другое называется химической реакцией. Образуется новое вещество - и это сродни волшебству! Не зря в давние времена к алхимикам относились как к волшебникам, полагая, что они могут получать золото из других металлов.

Общая классификация

Химия - это могучее дерево, обладающее мощными ветвями - разделами данной науки. Они довольно сильно отличаются по своим задачам и методам, однако связаны между собой прочно. :

  • Аналитическая. Рассказывает о том, сколько и каких веществ содержится в определенной смеси. Делает анализ (количественный и качественный), используя широкий инструментарий.
  • Биохимия. Ее предмет изучения - химические реакции, происходящие в организмах. Обмен веществ и пищеварение, дыхание и размножение - все это является прерогативой данной науки. Исследования ведутся учеными на микроскопическом или молекулярном уровне.
  • Неорганическая. Ее связывают с исследованиями в области неорганики (к примеру, солей). Анализируются структуры, свойства данных соединений, их отдельных компонентов. Здесь также изучаются все элементы таблицы Менделеева (исключая углерод, который «достался» органической химии).
  • Органическая. Это химия, изучающая соединения углерода. Ученым известно великое множество (миллионы!) подобных соединений, но каждый год открывают и создают все новые и новые. Они находят применение в нефтехимии, производстве полимеров, фармацевтике.
  • Физическая. Здесь предмет изучения - закономерности реакций в отношении физических явлений. Данная отрасль занимается физическими свойствами и поведением веществ, разрабатывает модели и теории действий.

Биотехнология

Достаточно новая отрасль, сопутствующая химии и биологии. Предмет изучения - модификация или создание генетического материала (либо организмов) в определенных научных целях. Новейшие технологии и исследования в данной сфере применяются при клонировании, при получении новых сельхозкультур, вырабатывании устойчивости к болезням и негативной наследственности у живых организмов.

Древняя история

Значение слова «химия» для человеческой цивилизации можно усвоить, проследив этапы развития данной науки. Еще с незапамятных времен люди, иногда сами того не осознавая, использовали для получения металлов из руды, для покраски тканей и выделки кож. Таким образом, на заре культурной жизни и развития цивилизованного мира зарождалось химическое учение.

Средневековье и Возрождение

А уже в новой эре появляется алхимия. Ее основной задачей становится обретение так называемого «философского камня», а попутной - превращение металлов в золото. Кстати, многие историки считают, что именно алхимия дала огромный толчок к развитию химической науки.

В эпоху Возрождения подобные исследования стали использоваться для практических задач (в металлургии, производстве керамики и красок, стеклоделии); возникает специализированное направление алхимии - медицинское.

17-19-й века

Во II половине 17-го столетия Р. Бойль впервые дал научное определение понятию «химический элемент».

Во II половине 18-го уже подходит к завершению превращение химии в науку. К этому времени сформулированы законы сохранения массы в химических реакциях.

В 19-м веке закладывает основу химической атомистики, а Амедео Авогадро вводит термин «молекула». Атомно-молекулярная химия утверждается в 60-х 19-го столетия. А. М. Бутлеров создает теорию построения химических соединений. Д. И. периодический закон и таблицу.

Терминология

Их много утвердилось в течение всего времени развития химии. Далее представлены только основные из них.

Вещество - это вид материи, обладающий определенными химическими, а также физическими свойствами. Это совокупность атомов и молекул, которая находится в агрегатном состоянии. Все физические тела состоят из веществ.

Атом — химически неделимая, мельчайшая частица веществ. Он включает в свой состав ядро и электронную оболочку.

А что можно сказать про химические элементы? Каждый из них имеет свое название, свой порядковый номер, расположение в таблице Менделеева. На сегодня известно 118 элементов в естественной среде (крайний Uuo — унуноктий). Элементы обозначены символами, которые представляют 1 или 2 буквы латинского названия (к примеру, водород - H, латинское наименование Hydrogenium).

Химия изучает состав , свойства и превращения веществ, а также явления, которые сопровождают эти превращения.Одно из первых определений химии как науки дал русский ученый М.В. Ломоносов: «Химическая наука рассматривает свойства и изменения тел... состав тел... объясняет причину того, чтос веществами при химических превращениях происходит».По Менделееву, химия - это учение об элементах и их соединениях.Химия относится к естественным наукам, которые изучают окружающий нас мир. Она тесно связана с другими естественными науками: физикой, биологией, геологией. Многие разделы совр науки возникли на стыке этих наук: физическая химия, геохимия, биохимия. Химия тесно связана также с другими отраслями науки и техники. В ней широко применяются математические методы, используются расчеты и моделирование процессов на электронно-выч машинах.В совр химии выделилось много самостоятельных разделов, наиболее важные из которых, кроме отмеченных выше, неорганическая химия, органическая химия, х. полимеров, аналитическая химия, электрохимия, коллоидная химия и другие.Объектом изучения химии являются вещества. Обычно их подразделяют на смеси и чистые вещества. Среди последних выделяют простые и сложные. Простых веществ известно более 400, а сложных веществ - намного больше: несколько сот тысяч, относящихся к неорганическим, и несколько миллионов органических.Курс химии, изучаемый в средней школе, можно разделить на три основные части: общую, неорганическую и органическую химию. Общая химия рассматривает основные химические понятия, а также важнейшие закономерности, связанные с химическими превращениями. Этот раздел включает основы из различных разделов современной науки: «физической химии, химической кинетики, электрохимии, структурной химии и др. Неорганическая химия изучает свойства и превращения неорганических (минеральных) веществ. Органическая химия из. свойства и превращения органических веществ.Роль химии в промышленности и сельском хозяйстве. Во все времена химия служит человеку в его практической деятельности. Еще в древности возникли ремесла, в основе которых лежали химические процессы: получение металлов, стекла, керамики, красителей.Большую роль играет химия в современной промышленности. Химическая и нефтехимическая промышленность являются важнейшими отраслями, без которых невозможно функционирование экономики. Среди важнейших продуктов следует назвать кислоты, щелочи, соли, минеральные удобрения, растворители, масла, пластмассы, каучуки и резины, синтетические волокна и многое другое. В настоящее время химическая промышленность выпускает несколько десятков тысяч наименований продукции.Исключительно важную роль играют химические продукты и процессы в энергетике, которая использует энергию химических реакций. Для энергетических целей используются многие продукты переработки нефти (бензин, керосин, мазут), каменный и бурый уголь, сланцы, торф. В связи с уменьшением природных запасов нефти вырабатывается синтетическое топливо путем химической переработки различного природного сырья и отходов производства.Развитие многих отраслей промышленности связано с химией:металлургия, машиностроение, транспорт, промышленность строительных материалов, электроника, легкая, пищевая промышленность- вот неполный список отраслей экономики, широко использующих химические продукты и процессы. Во многих отраслях применяются химические методы, например, катализ (ускорение процессов), химическая обработка металлов, защита металлов от коррозии. Большую роль играет химия в развитии фармацевтической промышленности: основную часть всех лекарственных препаратов получают синтетическим путем. Исключительно большое значение химия имеет в сельском хозяйстве, которое использует минеральные удобрения, средства защиты растений от вредителей, регуляторы роста растений, химические добавки и консерванты к кормам для животных и другие продукты. Использование химических методов в сельском хозяйстве привело к возникновению ряда смежных наук, например, агрохимии и биотехнологии, достижения которых в настоящее время широко применяются в производстве сельскохозяйственной продукции.Бурное развитие промышленности, в том числе химической, создало серьезную проблему: необходимость снизить отрицательное ее воздействие на окружающую среду.Наука, которая изучает взаимоотношение человечества с окружающей средой, получила название экология. Экология имеет тесную связь с химией. С одной стороны, химическое воздействие на окружающую среду наносит ей большой вред, но с другой стороны, предупредить деградацию природы можно путем использования химических методов. Химия и химическая промышленность являются одними из наиболее существенных источников загрязнения окружающей средь.. Другими наиболее неблагоприятными в экологическом отношении производствами являются черная и цветная металлургия, автомобильный транспорт и энергетика (главным образом, тепловые станции). Только разумное знание и использование химии будет способствовать увеличению богатств страны.

Общее понятие химии

Вещества и их взаимные превращения являются предметом изучения химии. Химия - это наука о веществах и законах, которым подчиняются их превращения.

Слово «химия» получило широкое распространение с начала XVIII века. На многих языках оно имеет сходное звучание: chemistry ("кемистри) - на английском, сhemie (хе"ми) - на немецком. Корни «хем» или «хим» содержатся в соответствующих терминах и на многих других языках. Однако до сих пор не удалось установить, когда возникло слово «химия» и какой смысл в него первоначально вкладывался. Многие исследователи склоняются к тому, что это слово происходит от «Кеми» - «Черная страна». Так в древней Греции называли Египет, где зародилось «священное искусство химии». Это же слово относилось к цвету почвы в долине Нила. Смысл такого названия - «египетская наука». Однако в древнегреческом языке были другие близкие по звучанию слова. «Химос» или «хюмос» означало «сок»; это понятие встречается в рукописях, содержащих сведения по медицине и способам приготовления лекарств. «Хима» или «хюма» переводится как литье и относится к искусству выплавки металлов. «Хемевсис» означает «смешивание», являющееся важнейшей операцией большинства химических процессов. Термин «химия» в смысле «настаивание», «наливание» первым употребил греческий философ и естествоиспытатель Зосима Панополитанский на рубеже IV и V веков.

Исторически сложились два основных раздела химии: неорганическая химия, изучающая в первую очередь химические элементы и образуемые ими простые и сложные вещества (кроме соединений углерода), и органическая химия, предметом изучения которой являются соединения углерода с др. элементами (органические вещества). До конца 18 в. термины «неорганическая химия» и «органическая химия» указывали лишь на то, из какого «царства» природы (минерального, растительного или животного) получались те или иные соединения. Начиная с 19 в. эти термины стали указывать на присутствие или отсутствие углерода в данном веществе. Затем они приобрели новое, более широкое значение. Неорганическая химия соприкасается прежде всего с геохимией и далее с минералогией и геологией, т. е. с науками о неорганической природе. Органическая химия представляет отрасль химии, которая изучает разнообразные соединения углерода вплоть до сложнейших биополимерных веществ; через органическую и биоорганическую химию Химия граничит с биохимией и далее с биологией, т. е. с совокупностью наук о живой природе. На стыке между неорганической и органической химией находится область элементоорганических соединений.

В химии постепенно сформировались представления о структурных уровнях организации вещества. Усложнение вещества, начиная от низшего, атомарного, проходит ступени молекулярных, макромолекулярных, или высокомолекулярных, соединений (полимер), затем межмолекулярных (комплекс, клатрат, катенан), наконец, многообразных макроструктур (кристалл, мицелла) вплоть до неопределённых нестехиометрических образований. Постепенно сложились и обособились соответствующие дисциплины: химия комплексных соединений, полимеров, кристаллохимия, учения о дисперсных системах и поверхностных явлениях, сплавах и др.

1.2 Предмет и структура химии

Современная химия тесно связана как с другими науками, так и со всеми отраслями народного хозяйства. Качественная особенность химической формы движения материи и её переходов в др. формы движения обусловливает разносторонность химической науки и её связей с областями знания, изучающими и более низшие, и более высшие формы движения. Познание химической формы движения материи обогащает общее учение о развитии природы, эволюции вещества во Вселенной, содействует становлению целостной материалистической картины мира. Соприкосновение химии с др. науками порождает специфические области взаимного их проникновения. Так, области перехода между химией и физикой представлены физической химией и химической физикой. Между химией и биологией, химией и геологией возникли особые пограничные области - геохимия, биохимия, биогеохимия, молекулярная биология. Важнейшие законы химии формулируются на математическом языке, и теоретическая химия не может развиваться без математики. Химия оказывала и оказывает влияние на развитие философии и сама испытывала и испытывает её влияние.

Изучение химических объектов и явлений физическими методами, установление закономерностей химических превращений, исходя из общих принципов физики, лежит в основе физической химии. К этой области химии относится ряд в значительной мере самостоятельных дисциплин: термодинамика химическая, кинетика химическая, электрохимия, коллоидная химия, квантовая химия и учение о строении и свойствах молекул, ионов, радикалов, радиационная химия, фотохимия, учения о катализе, химических равновесиях, растворах и др. Самостоятельный характер приобрела аналитическая химия, методы которой широко применяются во всех областях химии. и химической промышленности. В областях практического приложения химии возникли такие науки и научные дисциплины, как химическая технология с множеством её отраслей, металлургия, агрохимия, медицинская химия, судебная химия и др.

Химия - наука о строении, свойствах веществ, их превращениях и явлениях, которые сопровождают эти превращения. В химии, как науке, можно выделить три основных цели. Первая, основная цель химии - изучение строения соединений, развитие теории строения и свойств молекул и веществ в целом.

Зная строение определенной молекулы и ее свойства, можно строить различные теории о реакционной способности соединения, кинетике, механизмах химических реакций и каталитических явлениях. Все химические превращения осуществляются в том или ином направлении в зависимости от состава и строения молекул, ионов, радикалов и т. д.

Химия-это область чудес, в ней скрыто счастье человечества, величайшие завоевания разума будут сделаны именно в этой области.

Максим Горький

Зная это, можно находить различные способы получения новых продуктов, имеющих совсем иные свойства, нежели исходное соединение. Отсюда вытекает вторая задача химии - синтез новых веществ с заданными свойствами. Кроме того, важно найти способы более выгодного получения данных соединений: катализаторы и условия проведения реакций.

Третье основное направление- это анализ. Эта задача в настоящее время важна не меньше остальных. Это связано с увеличением числа различных химических объектов, новых веществ. Также это необходимо для определения воздействий на окружающую среду.

Объектами исследования неорганической химии являются все химические элементы и их соединения. Основным вопросом считается изучение свойств химических соединений. Кроме химических свойств, также интересуют и физические, биологические и другие свойства соединений. Для этого привлекают и другие науки.

Так, важными составляющими при изучении химии являются физическая химия, биохимия. В настоящее время эти науки объединяют целый ряд других: квантовая химия, химическая термодинамика (термохимия), химическая кинетика, электрохимия, фотохимия, химия высоких энергий, компьютерная химия и др.

Только этот перечень наук химического направления говорит о разнообразии химической формы движения материи и влиянии ее на повседневную жизнь. Существует множество направлений развития прикладной химии, призванной решать конкретные задачи практической деятельности человека. Химическая наука достигла такого высокого уровня развития, что стала порождать новые виды производств и технологий.