Найти т среднее. Занимательная математика

В статистике используют различные виды средних величин, которые делятся на два больших класса:

Степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая, средняя квадра-тическая, средняя кубическая);

Структурные средние (мода, медиана).

Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Мода и медиана определяются лишь структурой распределения, поэтому их называют структурными, позиционными средними. Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.

Самый распространенный вид средней величины – средняя арифметическая. Под средней арифметической понимается такое значение признака, которое имела бы каждая единица совокупности, если бы общий итог всех значений признака был распределен равномерно между всеми единицами совокупности. Вычисление данной величины сводится к суммированию всех значений варьирующего признака и делению полученной суммы на общее количество единиц совокупности. Например, пять рабочих выполняли заказ на изготовление деталей, при этом первый изготовил 5 деталей, второй – 7, третий – 4, четвертый – 10, пятый– 12. Поскольку в исходных данных значение каждого варианта встречалось только один раз, для опреде-

ления средней выработки одного рабочего следует применить формулу простой средней арифметической:

т. е. в нашем примере средняя выработка одного рабочего равна

Наряду с простой средней арифметической изучают среднюю арифметическую взвешенную. Например, рассчитаем средний возраст студентов в группе из 20 человек, возраст которых варьируется от 18 до 22 лет, где xi – варианты осредняемого признака, fi – частота, которая показывает, сколько раз встречается i-е значение в совокупности (табл. 5.1).

Таблица 5.1

Средний возраст студентов

Применяя формулу средней арифметической взвешенной, получаем:


Для выбора средней арифметической взвешенной существует определенное правило: если имеется ряд данных по двум показателям, для одного из которых надо вычислить

среднюю величину, и при этом известны численные значения знаменателя ее логической формулы, а значения числителя неизвестны, но могут быть найдены как произведение этих показателей, то средняя величина должна высчитывать-ся по формуле средней арифметической взвешенной.

В некоторых случаях характер исходных статистических данных таков, что расчет средней арифметической теряет смысл и единственным обобщающим показателем может служить только другой вид средней величины – средняя гармоническая. В настоящее время вычислительные свойства средней арифметической потеряли свою актуальность при расчете обобщающих статистических показателей в связи с повсеместным внедрением электронно-вычислительной техники. Большое практическое значение приобрела средняя гармоническая величина, которая тоже бывает простой и взвешенной. Если известны численные значения числителя логической формулы, а значения знаменателя неизвестны, но могут быть найдены как частное деление одного показателя на другой, то средняя величина вычисляется по формуле средней гармонической взвешенной.

Например, пусть известно, что автомобиль прошел первые 210 км со скоростью 70 км/ч, а оставшиеся 150 км со скоростью 75 км/ч. Определить среднюю скорость автомобиля на протяжении всего пути в 360 км, используя формулу средней арифметической, нельзя. Так как вариантами являются скорости на отдельных участках xj = 70 км/ч и Х2 = 75 км/ч, а весами (fi) считаются соответствующие отрезки пути, то произведения вариантов на веса не будут иметь ни физического, ни экономического смысла. В данном случае смысл приобретают частные от деления отрезков пути на соответствующие скорости (варианты xi), т. е. затраты времени на прохождение отдельных участков пути (fi/ xi). Если отрезки пути обозначить через fi, то весь путь выразиться как?fi, а время, затраченное на весь путь, – как? fi/ xi , Тогда средняя скорость может быть найдена как частное от деления всего пути на общие затраты времени:

В нашем примере получим:

Если при использовании средней гармонической веса всех вариантов (f) равны, то вместо взвешенной можно использовать простую (невзвешенную) среднюю гармоническую:

где xi – отдельные варианты; n – число вариантов осредняемого признака. В примере со скоростью простую среднюю гармоническую можно было бы применить, если бы были равны отрезки пути, пройденные с разной скоростью.

Любая средняя величина должна вычисляться так, чтобы при замене ею каждого варианта осредняемого признака не изменялась величина некоторого итогового, обобщающего показателя, который связан с осредняемым показателем. Так, при замене фактических скоростей на отдельных отрезках пути их средней величиной (средней скоростью) не должно измениться общее расстояние.

Форма (формула) средней величины определяется характером (механизмом) взаимосвязи этого итогового показателя с осредняемым, поэтому итоговый показатель, величина которого не должна изменяться при замене вариантов их средней величиной, называется определяющим показателем. Для вывода формулы средней нужно составить и решить уравнение, используя взаимосвязь осредняемого показателя с определяющим. Это уравнение строится путем замены вариантов осредняемого признака (показателя) их средней величиной.

Кроме средней арифметической и средней гармонической в статистике используются и другие виды (формы) средней величины. Все они являются частными случаями степенной средней. Если рассчитывать все виды степенных средних величин для одних и тех же данных, то значения

их окажутся одинаковыми, здесь действует правило мажо-рантности средних. С увеличением показателя степени средних увеличивается и сама средняя величина. Наиболее часто применяемые в практических исследованиях формулы вычисления различных видов степенных средних величин представлены в табл. 5.2.

Таблица 5.2

Виды степенных средних


Средняя геометрическая применяется, когда имеется n коэффициентов роста, при этом индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста. Средняя геометрическая простая рассчитывается по формуле

Формула средней геометрической взвешенной имеет следующий вид:

Приведенные формулы идентичны, но одна применяется при текущих коэффициентах или темпах роста, а вторая – при абсолютных значениях уровней ряда.

Средняя квадратическая применяется при расчете с величинами квадратных функций, используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения и вычисляется по формуле

Средняя квадратическая взвешенная рассчитывается по другой формуле:

Средняя кубическая применяется при расчете с величинами кубических функций и вычисляется по формуле

средняя кубическая взвешенная:

Все рассмотренные выше средние величины могут быть представлены в виде общей формулы:

где – средняя величина; – индивидуальное значение; n – число единиц изучаемой совокупности; k – показатель степени, определяющий вид средней.

При использовании одних и тех же исходных данных, чем больше k в общей формуле степенной средней, тем больше средняя величина. Из этого следует, что между величинами степенных средних существует закономерное соотношение:

Средние величины, описанные выше, дают обобщенное представление об изучаемой совокупности и с этой точки зрения их теоретическое, прикладное и познавательное значение бесспорно. Но бывает, что величина средней не совпадает ни с одним из реально существующих вариантов, поэтому кроме рассмотренных средних в статистическом анализе целесообразно использовать величины конкретных вариантов, занимающие в упорядоченном (ранжированном) ряду значений признака вполне определенное положение. Среди таких величин наиболее употребительными являются структурные, или описательные, средние – мода (Мо) и медиана (Ме).

Мода – величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда, т. е. вариант, обладающий наибольшей частотой. Мода может применяться при определении магазинов, которые чаще посещаются, наиболее распространенной цены на какой-либо товар. Она показывает размер признака, свойственный значительной части совокупности, и определяется по формуле

где х0 – нижняя граница интервала; h – величина интервала; fm – частота интервала; fm_ 1 – частота предшествующего интервала; fm+ 1 – частота следующего интервала.

Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц совокупности. При этом у одной половины единиц совокупности значение варьирующего признака меньше медианы, у другой – больше ее. Медиана используется при изучении элемента, значение которого больше или равно или одновременно меньше или равно половине элементов ряда распределения. Медиана дает общее представление о том, где сосредоточены значения признака, иными словами, где находится их центр.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми обладает половина единиц совокупности. Задача нахождения медианы для дискретного вариационного ряда решается просто. Если всем единицам ряда придать порядковые номера, то порядковый номер медианного варианта определяется как (п +1) / 2 с нечетным числом членов п. Если же количество членов ряда является четным числом, то медианой будет являться среднее значение двух вариантов, имеющих порядковые номера n / 2 и n / 2 + 1.

При определении медианы в интервальных вариационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Расчет медианы интервального вариационного ряда производится по формуле

где X0 – нижняя граница интервала; h – величина интервала; fm – частота интервала; f – число членов ряда;

M-1 – сумма накопленных членов ряда, предшествующих данному.

Наряду с медианой для более полной характеристики структуры изучаемой совокупности применяют и другие значения вариантов, занимающих в ранжированном ряду вполне определенное положение. К ним относятся квартили и децили. Квартили делят ряд по сумме частот на 4 равные части, а децили – на 10 равных частей. Квартилей насчитывается три, а децилей – девять.

Медиана и мода в отличие от средней арифметической не погашают индивидуальных различий в значениях варьирующего признака и поэтому являются дополнительными и очень важными характеристиками статистической совокупности. На практике они часто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содержит некоторое количество единиц с очень большим или очень малым значением варьирующего признака. Эти, не очень характерные для совокупности значения вариантов, влияя на величину средней арифметической, не влияют на значения медианы и моды, что делает последние очень ценными для экономико-статистического анализа показателями.

У этого термина существуют и другие значения, см. среднее значение.

Сре́днее арифмети́ческое (в математике и статистике) множества чисел - сумма всех чисел, делённая на их количество. Является одной из наиболее распространённых мер центральной тенденции.

Предложена (наряду со средним геометрическим и средним гармоническим) ещё пифагорейцами.

Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).

Введение

Обозначим множество данных X = (x 1 , x 2 , …, x n ), тогда выборочное среднее обычно обозначается горизонтальной чертой над переменной (x ¯ {\displaystyle {\bar {x}}} , произносится «x с чертой»).

Для обозначения среднего арифметического всей совокупности используется греческая буква μ. Для случайной величины, для которой определено среднее значение, μ есть вероятностное среднее или математическое ожидание случайной величины. Если множество X является совокупностью случайных чисел с вероятностным средним μ, тогда для любой выборки x i из этой совокупности μ = E{x i } есть математическое ожидание этой выборки.

На практике разница между μ и x ¯ {\displaystyle {\bar {x}}} в том, что μ является типичной переменной, потому что видеть можно скорее выборку, а не всю генеральную совокупность. Поэтому, если выборку представлять случайным образом (в терминах теории вероятностей), тогда x ¯ {\displaystyle {\bar {x}}} (но не μ) можно трактовать как случайную переменную, имеющую распределение вероятностей на выборке (вероятностное распределение среднего).

Обе эти величины вычисляются одним и тем же способом:

X ¯ = 1 n ∑ i = 1 n x i = 1 n (x 1 + ⋯ + x n) . {\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}={\frac {1}{n}}(x_{1}+\cdots +x_{n}).}

Если X - случайная переменная, тогда математическое ожидание X можно рассматривать как среднее арифметическое значений в повторяющихся измерениях величины X . Это является проявлением закона больших чисел. Поэтому выборочное среднее используется для оценки неизвестного математического ожидания.

В элементарной алгебре доказано, что среднее n + 1 чисел больше среднего n чисел тогда и только тогда, когда новое число больше чем старое среднее, меньше тогда и только тогда, когда новое число меньше среднего, и не меняется тогда и только тогда, когда новое число равно среднему. Чем больше n , тем меньше различие между новым и старым средними значениями.

Заметим, что имеется несколько других «средних» значений, в том числе среднее степенное, среднее Колмогорова, гармоническое среднее, арифметико-геометрическое среднее и различные средне-взвешенные величины (например, среднее арифметическое взвешенное, среднее геометрическое взвешенное, среднее гармоническое взвешенное).

Примеры

  • Для трёх чисел необходимо сложить их и разделить на 3:
x 1 + x 2 + x 3 3 . {\displaystyle {\frac {x_{1}+x_{2}+x_{3}}{3}}.}
  • Для четырёх чисел необходимо сложить их и разделить на 4:
x 1 + x 2 + x 3 + x 4 4 . {\displaystyle {\frac {x_{1}+x_{2}+x_{3}+x_{4}}{4}}.}

Или проще 5+5=10, 10:2. Потому что мы складывали 2 числа, а значит, сколько чисел складываем, на столько и делим.

Непрерывная случайная величина

Для непрерывно распределённой величины f (x) {\displaystyle f(x)} среднее арифметическое на отрезке [ a ; b ] {\displaystyle } определяется через определённый интеграл:

F (x) ¯ [ a ; b ] = 1 b − a ∫ a b f (x) d x {\displaystyle {\overline {f(x)}}_{}={\frac {1}{b-a}}\int _{a}^{b}f(x)dx}

Некоторые проблемы применения среднего

Отсутствие робастности

Основная статья: Робастность в статистике

Хотя среднее арифметическое часто используется в качестве средних значений или центральных тенденций, это понятие не относится к робастной статистике, что означает, что среднее арифметическое подвержено сильному влиянию «больших отклонений». Примечательно, что для распределений с большим коэффициентом асимметрии среднее арифметическое может не соответствовать понятию «среднего», а значения среднего из робастной статистики (например, медиана) может лучше описывать центральную тенденцию.

Классическим примером является подсчёт среднего дохода. Арифметическое среднее может быть неправильно истолковано в качестве медианы, из-за чего может быть сделан вывод, что людей с большим доходом больше, чем на самом деле. «Средний» доход истолковывается таким образом, что доходы большинства людей находятся вблизи этого числа. Этот «средний» (в смысле среднего арифметического) доход является выше, чем доходы большинства людей, так как высокий доход с большим отклонением от среднего делает сильный перекос среднего арифметического (в отличие от этого, средний доход по медиане «сопротивляется» такому перекосу). Однако, этот «средний» доход ничего не говорит о количестве людей вблизи медианного дохода (и не говорит ничего о количестве людей вблизи модального дохода). Тем не менее, если легкомысленно отнестись к понятиям «среднего» и «большинство народа», то можно сделать неверный вывод о том, что большинство людей имеют доходы выше, чем они есть на самом деле. Например, отчёт о «среднем» чистом доходе в Медине, штат Вашингтон, подсчитанный как среднее арифметическое всех ежегодных чистых доходов жителей, даст на удивление большое число из-за Билла Гейтса. Рассмотрим выборку (1, 2, 2, 2, 3, 9). Среднее арифметическое равно 3.17, но пять значений из шести ниже этого среднего.

Сложный процент

Основная статья: Окупаемость инвестиций

Если числа перемножать , а не складывать , нужно использовать среднее геометрическое, а не среднее арифметическое. Наиболее часто этот казус случается при расчёте окупаемости инвестиций в финансах.

Например, если акции в первый год упали на 10 %, а во второй год выросли на 30 %, тогда некорректно вычислять «среднее» увеличение за эти два года как среднее арифметическое (−10 % + 30 %) / 2 = 10 %; правильное среднее значение в этом случае дают совокупные ежегодные темпы роста, по которым годовой рост получается только около 8,16653826392 % ≈ 8,2 %.

Причина этого в том, что проценты имеют каждый раз новую стартовую точку: 30 % - это 30 % от меньшего, чем цена в начале первого года, числа: если акции в начале стоили $30 и упали на 10 %, они в начале второго года стоят $27. Если акции выросли на 30 %, они в конце второго года стоят $35.1. Арифметическое среднее этого роста 10 %, но поскольку акции выросли за 2 года всего на $5.1, средний рост в 8,2 % даёт конечный результат $35.1:

[$30 (1 - 0.1) (1 + 0.3) = $30 (1 + 0.082) (1 + 0.082) = $35.1]. Если же использовать таким же образом среднее арифметическое значение 10 %, мы не получим фактическое значение: [$30 (1 + 0.1) (1 + 0.1) = $36.3].

Сложный процент в конце 2 года: 90 % * 130 % = 117 % , то есть общий прирост 17 %, а среднегодовой сложный процент 117 % ≈ 108.2 % {\displaystyle {\sqrt {117\%}}\approx 108.2\%} , то есть среднегодовой прирост 8,2 %.

Направления

Основная статья: Статистика направлений

При расчёте среднего арифметического значений некоторой переменной, изменяющейся циклически (например, фаза или угол), следует проявлять особую осторожность. Например, среднее чисел 1° и 359° будет равно 1 ∘ + 359 ∘ 2 = {\displaystyle {\frac {1^{\circ }+359^{\circ }}{2}}=} 180°. Это число неверно по двум причинам.

  • Во-первых, угловые меры определены только для диапазона от 0° до 360° (или от 0 до 2π при измерении в радианах). Таким образом, ту же пару чисел можно было бы записать как (1° и −1°) или как (1° и 719°). Средние значения каждой из пар будут отличаться: 1 ∘ + (− 1 ∘) 2 = 0 ∘ {\displaystyle {\frac {1^{\circ }+(-1^{\circ })}{2}}=0^{\circ }} , 1 ∘ + 719 ∘ 2 = 360 ∘ {\displaystyle {\frac {1^{\circ }+719^{\circ }}{2}}=360^{\circ }} .
  • Во-вторых, в данном случае, значение 0° (эквивалентное 360°) будет геометрически лучшим средним значеним, так как числа отклоняются от 0° меньше, чем от какого-либо другого значения (у значения 0° наименьшая дисперсия). Сравните:
    • число 1° отклоняется от 0° всего на 1°;
    • число 1° отклоняется от вычисленного среднего, равного 180°, на 179°.

Среднее значение для циклической переменной, рассчитанное по приведённой формуле, будет искусственно сдвинуто относительно настоящего среднего к середине числового диапазона. Из-за этого среднее рассчитывается другим способом, а именно, в качестве среднего значения выбирается число с наименьшей дисперсией (центральная точка). Также вместо вычитания используется модульное расстояние (то есть, расстояние по окружности). Например, модульное расстояние между 1° и 359° равно 2°, а не 358° (на окружности между 359° и 360°==0° - один градус, между 0° и 1° - тоже 1°, в сумме - 2°).

Виды средних величин и методы их расчета

На этапе статистической обработки могут быть поставлены самые различные задачи исследования, для решения которых нужно выбрать соответствующую среднюю. При этом необходимо руководствоваться следующим правилом: величины, которые представляют собой числитель и знаменатель средней, должны быть логически связаны между собой.

  • степенные средние ;
  • структурные средние .

Введем следующие условные обозначения:

Величины, для которых исчисляется средняя;

Средняя, где черта сверху свидетельствует о том, что имеет место осреднение индивидуальных значений;

Частота (повторяемость индивидуальных значений признака).

Различные средние выводятся из общей формулы степенной средней:

(5.1)

при k = 1 - средняя арифметическая; k = -1 - средняя гармоническая; k = 0 - средняя геометрическая; k = -2 - средняя квадратическая.

Средние величины бывают простые и взвешенные. Взвешенными средними называют величины, которые учитывают, что некоторые варианты значений признака могут иметь различную численность, в связи с чем каждый вариант приходится умножать на эту численность. Иными словами, «весами» выступают числа единиц совокупности в разных группах, т.е. каждый вариант «взвешивают» по своей частоте. Частоту f называют статистическим весом или весом средней .

Средняя арифметическая - самый распространенный вид средней. Она используется, когда расчет осуществляется по несгруппированным статистическим данным, где нужно получить среднее слагаемое. Средняя арифметическая - это такое среднее значение признака, при получении которого сохраняется неизменным общий объем признака в совокупности.

Формула средней арифметической (простой ) имеет вид

где n - численность совокупности.

Например, средняя заработная плата работников предприятия вычисляется как средняя арифметическая:

Определяющими показателями здесь являются заработная плата каждого работника и число работников предприятия. При вычислении средней общая сумма заработной платы осталась прежней, но распределенной как бы между всеми работниками поровну. К примеру, необходимо вычислить среднюю заработную плату работников небольшой фирмы, где заняты 8 человек:

При расчете средних величин отдельные значения признака, который осредняется, могут повторяться, поэтому расчет средней величины производится по сгруппированным данным. В этом случае речь идет об использовании средней арифметической взвешенной , которая имеет вид

(5.3)

Так, нам необходимо рассчитать средний курс акций какого-то акционерного общества на торгах фондовой биржи. Известно, что сделки осуществлялись в течение 5 дней (5 сделок), количество проданных акций по курсу продаж распределилось следующим образом:

1 - 800 ак. - 1010 руб.

2 - 650 ак. - 990 руб.

3 - 700 ак. - 1015 руб.

4 - 550 ак. - 900 руб.

5 - 850 ак. - 1150 руб.

Исходным соотношением для определения среднего курса стоимости акций является отношение общей суммы сделок (ОСС) к количеству проданных акций (КПА):

ОСС = 1010 ·800+990·650+1015·700+900·550+1150·850= 3 634 500;

КПА = 800+650+700+550+850=3550.

В этом случае средний курс стоимости акций был равен

Необходимо знать свойства арифметической средней, что очень важно как для ее использования, так и при ее расчете. Можно выделить три основных свойства, которые наиболее всего обусловили широкое применение арифметической средней в статистико-экономических расчетах.

Свойство первое (нулевое ): сумма положительных отклонений индивидуальных значений признака от его среднего значения равна сумме отрицательных отклонений. Это очень важное свойство, поскольку оно показывает, что любые отклонения (как с +, так и с -), вызванные случайными причинами, взаимно будут погашены.

Доказательство:

Свойство второе (минимальное ): сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем от любого другого числа (а), т.е. есть число минимальное.

Доказательство.

Составим сумму квадратов отклонений от переменной а:

(5.4)

Чтобы найти экстремум этой функции, необходимо ее производную по а приравнять нулю:

Отсюда получаем:

(5.5)

Следовательно, экстремум суммы квадратов отклонений достигается при . Этот экстремум - минимум, так как функция не может иметь максимума.

Свойство третье : средняя арифметическая постоянной величины равна этой постоянной: при а = const.

Кроме этих трех важнейших свойств средней арифметической существуют так называемые расчетные свойства , которые постепенно теряют свою значимость в связи с использованием электронно-вычислительной техники:

  • если индивидуальное значение признака каждой единицы умножить или разделить на постоянное число, то средняя арифметическая увеличится или уменьшится во столько же раз;
  • средняя арифметическая не изменится, если вес (частоту) каждого значения признака разделить на постоянное число;
  • если индивидуальные значения признака каждой единицы уменьшить или увеличить на одну и ту же величину, то средняя арифметическая уменьшится или увеличится на ту же самую величину.

Средняя гармоническая . Эту среднюю называют обратной средней арифметической, поскольку эта величина используется при k = -1.

Простая средняя гармоническая используется тогда, когда веса значений признака одинаковы. Ее формулу можно вывести из базовой формулы, подставив k = -1:

К примеру, нам нужно вычислить среднюю скорость двух автомашин, прошедших один и тот же путь, но с разной скоростью: первая - со скоростью 100 км/ч, вторая - 90 км/ч. Применяя метод средней гармонической, мы вычисляем среднюю скорость:

В статистической практике чаще используется гармоническая взвешенная, формула которой имеет вид

Данная формула используется в тех случаях, когда веса (или объемы явлений) по каждому признаку не равны. В исходном соотношении для расчета средней известен числитель, но неизвестен знаменатель.

Например, при расчете средней цены мы должны пользоваться отношением суммы реализации к количеству реализованных единиц. Нам не известно количество реализованных единиц (речь идет о разных товарах), но известны суммы реализаций этих различных товаров. Допустим, необходимо узнать среднюю цену реализованных товаров:

Получаем

Средняя геометрическая . Чаще всего средняя геометрическая находит свое применение при определении средних темпов роста (средних коэффициентов роста), когда индивидуальные значения признака представлены в виде относительных величин. Она используется также, если необходимо найти среднюю между минимальным и максимальным значениями признака (например, между 100 и 1000000). Существуют формулы для простой и взвешенной средней геометрической.

Для простой средней геометрической

Для взвешенной средней геометрической

Средняя квадратическая величина . Основной сферой ее применения является измерение вариации признака в совокупности (расчет среднего квадратического отклонения).

Формула простой средней квадратической

Формула взвешенной средней квадратической

(5.11)

В итоге можно сказать, что от правильного выбора вида средней величины в каждом конкретном случае зависит успешное решение задач статистического исследования. Выбор средней предполагает такую последовательность:

а) установление обобщающего показателя совокупности;

б) определение для данного обобщающего показателя математического соотношения величин;

в) замена индивидуальных значений средними величинами;

г) расчет средней с помощью соответствующего уравнения.

Средние величины и вариация

Средняя величина - это обобщающий показатель, который характеризует качественно однородную совокупность по определенному количественному признаку. Например, средний возраст лиц, осужденных за кражу.

В судебной статистике средние величины используют для характеристики:

Средних сроков рассмотрения дел данной категории;

Среднего размера иска;

Среднего числа ответчиков, приходящихся на одно дело;

Среднего размера ущерба;

Средней нагрузки судей, и др.

Средняя всегда величина именованная и имеет ту же размерность, что и признак у отдельной единицы совокупности. Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному варьирующему признаку, поэтому за всякой средней скрывается ряд распределения единиц этой совокупности по изучаемому признаку. Выбор вида средней определяется содержанием показателя и исходных данных для расчета средней величины.

Все виды средних величин, используемые в статистических исследованиях, подразделяются на две категории:

1) степенные средние;

2) структурные средние.

Первая категория средних величин включает: среднюю арифметическую, среднюю гармоническую, среднюю геометрическую и среднюю квадратическую . Вторая категория - это мода и медиана . При этом каждый из перечисленных видов степенных средних величин может иметь две формы: простую и взвешенную . Простая форма средней величины используется для получения среднего значения изучаемого признака, когда расчет осуществляется по несгруппированным статистическим данным, либо когда каждая варианта в совокупности встречается только один раз. Взвешенными средними называют величины, которые учитывают, что варианты значений признака могут иметь различную численность, в связи, с чем каждый вариант приходится умножать на соответствующую частоту. Иными словами, каждый вариант «взвешивают» по своей частоте. Частоту называют статистическим весом.

Средняя арифметическая простая – самый распространенный вид средней. Она равна сумме отдельных значений признака, деленной на общее число этих значений:

,

где x 1 ,x 2 , … ,x N – индивидуальные значения варьирующего признака (варианты), а N – число единиц совокупности.

Средняя арифметическая взвешенная применяется в тех случаях, когда данные представлены в виде рядов распределения или группировок. Она вычисляется как сумма произведений вариантов на соответствующие им частоты, деленная на сумму частот всех вариантов:

где x i – значение i –й варианты признака; f i – частота i –й варианты.

Таким образом, каждое значение варианты взвешивается по своей частоте, поэтому частоты иногда называют статистическими весами.

Замечание. Когда речь идет о средней арифметической величине без указания ее вида, подразумевается средняя арифметическая простая.

Таблица 12.

Решение. Для расчета используем формулу средней арифметической взвешенной:

Таким образом, в среднем на одно уголовное дело приходится два обвиняемых.

Если вычисление средней величины производят по данным, сгруппированным в виде интервальных рядов распределения, то сначала надо определить серединные значения каждого интервала х" i , после чего рассчитать среднюю величину по формуле средней арифметической взвешенной, в которую вместо x i подставляют х" i .

Пример. Данные о возрасте преступников, осужденных за совершение кражи, представлены в таблице:

Таблица 13.

Определить средний возраст преступников, осужденных за совершение кражи.

Решение. Для того, чтобы определить средний возраст преступников на основе интервального вариационного ряда необходимо сначала найти серединные значения интервалов. Так как дан интервальный ряд с открытыми первым и последним интервалами, то величины этих интервалов принимаются равными величинам смежных закрытых интервалов. В нашем случае величина первого и последнего интервалов равны 10.

Теперь находим средний возраст преступников по формуле средней арифметической взвешенной:

Таким образом, средний возраст преступников, осужденных за совершение кражи, приближенно равен 27 лет.

Средняя гармоническая простая представляет собой величину, обратную средней арифметической из обратных значений признака:

где 1/x i – обратные значения вариантов, а N – число единиц совокупности.

Пример. Для определения средней годовой нагрузки на судей районного суда при рассмотрении уголовных дел провели обследование нагрузки 5 судей этого суда. Средние затраты времени на одно уголовное дело для каждого из обследованных судей оказались равными (в днях): 6, 0, 5, 6, 6, 3, 4, 9, 5, 4. Найти средние затраты на одно уголовное дело и среднюю годовую нагрузку на судей данного районного суда при рассмотрении уголовных дел.

Решение. Для определения средних затрат времени на одно уголовное дело, воспользуемся формулой средней гармонической простой:

Для упрощения расчетов в примере возьмем число дней в году равным 365, включая выходные (это не влияет на методику расчета, а при вычислении аналогичного показателя на практике необходимо вместо 365 дней подставить количество рабочих дней в конкретном году). Тогда средняя годовая нагрузка на судей данного районного суда при рассмотрении уголовных дел составит: 365(дней) : 5,56 ≈ 65,6 (дел).

Если бы мы для определения средних затрат времени на одно уголовное дело, воспользовались формулой средней арифметической простой, то получили бы:

365 (дней) : 5,64 ≈ 64,7 (дела), т.е. средняя нагрузка на судей оказалась меньше.

Проверим обоснованность такого подхода. Для этого воспользуемся данными о затратах времени на одно уголовное дело для каждого судьи и рассчитаем число уголовных, рассмотренных каждым из них за год.

Получим соответственно :

365(дней) : 6 ≈ 61 (дело), 365(дней) : 5,6 ≈ 65,2 (дел), 365(дней) : 6,3 ≈ 58 (дел),

365(дней) : 4,9 ≈ 74,5 (дела), 365(дней) : 5,4 ≈ 68 (дел).

Теперь вычислим среднюю годовую нагрузку на судей данного районного суда при рассмотрении уголовных дел:

Т.е. средняя годовая нагрузка такая же, как и при использовании средней гармонической.

Таким образом, использование средней арифметической в данном случае неправомерно.

В тех случаях, когда известны варианты признака, их объемные значения (произведение варианты на частоту), но неизвестны сами частоты, применяется формула средней гармонической взвешенной:

,

где x i – значения вариантов признака, а w i – объемные значения вариантов (w i = x i · f i ).

Пример. Данные о цене единицы однотипного товара, произведенного различными учреждениями уголовно-исполнительной системы, и об объемах его реализации приведены в таблице 14.

Таблица 14

Найти среднюю цену реализации товара.

Решение. При расчете средней цены мы должны пользоваться отношением суммы реализации к количеству реализованных единиц. Нам неизвестно количество реализованных единиц, но известны суммы реализаций товаров. Поэтому для нахождения средней цены реализованных товаров воспользуемся формулой средней гармонической взвешенной. Получаем

Если здесь использовать формулу средней арифметической, то можно получить среднюю цену, которая будет нереальна:

Средняя геометрическая вычисляется извлечением корня степени N из произведения всех значений вариантов признака:

где x 1 ,x 2 , … ,x N – индивидуальные значения варьирующего признака (варианты), а

N – число единиц совокупности.

Этот вид средней используется для вычисления средних показателей роста рядов динамики.

Средняя квадратическая применяется для расчета среднеквадратического отклонения, являющегося показателем вариации, и будет рассмотрена ниже.

Для определения структуры совокупности используют особые средние показатели, к которым относятся медиана и мода , или так называемые структурные средние. Если средняя арифметическая рассчитывается на основе использования всех вариантов значений признака, то медиана и мода характеризуют величину того варианта, который занимает определенное среднее положение в ранжированном (упорядоченном) ряду. Упорядочение единиц статистической совокупности может быть проведено по возрастанию или убыванию вариантов изучаемого признака.

Медиана (Ме) – это величина, которая соответствует варианту, находящемуся в середине ранжированного ряда. Таким образом, медиана – это тот вариант ранжированного ряда, по обе стороны от которого в данном ряду должно находиться равное число единиц совокупности.

Для нахождения медианы сначала необходимо определить ее порядковый номер в ранжированном ряду по формуле:

где N – объем ряда (число единиц совокупности).

Если ряд состоит из нечетного числа членов, то медиана равна варианте с номером N Me . Если же ряд состоит из четного числа членов, то медиана определяется как среднее арифметическое двух смежных вариант, расположенных в середине.

Пример. Дан ранжированный ряд 1, 2, 3, 3, 6, 7, 9, 9, 10. Объем ряда N = 9, значит N Me = (9 + 1) / 2 = 5. Следовательно, Ме = 6, т.е. пятой варианте. Если дан ряд 1, 5, 7, 9, 11, 14, 15, 16, т.е. ряд с четным числом членов (N = 8), то N Me = (8 + 1) / 2 = 4,5. Значит медиана равна полусумме четвертой и пятой вариант, т.е. Ме = (9 + 11) / 2 = 10.

В дискретном вариационном ряду медиану определяют по накопленным частотам. Частоты вариант, начиная с первой, суммируются до тех пор, пока не будет превзойден номер медианы. Значение последней просуммированной варианты и будет медианой.

Пример. Найти медиану числа обвиняемых, приходящихся на одно уголовное дело, используя данные таблицы 12.

Решение. В данном случае объем вариационного ряда N = 154, следовательно, N Me = (154 + 1) / 2 = 77,5. Просуммировав частоты первой и второй варианты, получим: 75 + 43 = 118, т.е. мы превзошли номер медианы. Значит Ме = 2.

В интервальном вариационном ряду распределения сначала указывают интервал, в котором будет находиться медиана. Его называют медианным . Это первый интервал, накопленная частота которого превышает половину объема интервального вариационного ряда. Затем численное значение медианы определяется по формуле:

где x Ме – нижняя граница медианного интервала; i – величина медианного интервала; S Ме-1 – накопленная частота интервала, который предшествует медианному; f Ме – частота медианного интервала.

Пример. Найти медиану возраста преступников, осужденных за совершение кражи, на основе статистических данных, представленных в таблице 13.

Решение. Статистические данные представлены интервальным вариационным рядом, значит сначала определим медианный интервал. Объем совокупности N = 162, следовательно, медианным интервалом является интервал 18-28, т.к. это первый интервал, накопленная частота которого (15 + 90 = 105) превышает половину объема (162: 2 = 81) интервального вариационного ряда. Теперь численное значение медианы определяем по приведенной выше формуле:

Таким образом, половина осужденных за совершение кражи младше 25 лет.

Модой (Мо) называют значение признака, которое наиболее часто встречается у единиц совокупности. К моде прибегают для выявления величины признака, имеющей наибольшее распространение. Для дискретного ряда модой будет являться вариант с наибольшей частотой. Например, для дискретного ряда, представленного в таблице 3 Мо = 1, так как этому значению варианты соответствует наибольшая частота - 75. Для определения моды интервального ряда сначала определяют модальный интервал (интервал, имеющий наибольшую частоту). Затем в пределах этого интервала находят то значение признака, которое может являться модой.

Его значение находят по формуле:

где x Mo – нижняя граница модального интервала; i – величина модального интервала; f Мо – частота модального интервала; f Мо-1 – частота интервала, предшествующего модальному; f Мо+1 – частота интервала, следующего за модальным.

Пример. Найтимодувозраста преступников, осужденных за совершение кражи, данные о которых представлены в таблице 13.

Решение. Наибольшая частота соответствует интервалу 18-28, следовательно, мода должна находиться в этом иртервале. Ее величину определяем по приведенной выше формуле:

Таким образом, наибольшее число преступников, осужденных за совершение кражи, имеет возраст 24 года.

Средняя величина дает обобщающую характеристику всей совокупности изучаемого явления. Однако две совокупности, имеющие одинаковые средние значения, могут значительно отличаться друг от друга по степени колеблемости (вариации) величины изучаемого признака. Например, в одном суде были назначены следующие сроки лишения свободы: 3, 3, 3, 4, 5, 5, 5, 12, 12, 15 лет, а в другом – 5, 5, 6, 6, 7, 7, 7, 8, 8, 8 лет. В обоих случаях средняя арифметическая равна 6,7 лет. Однако эти совокупности существенно различаются между собой разбросом индивидуальных значений назначенного срока лишения свободы относительно среднего значения.

И для первого суда, где этот разброс достаточно большой, средняя величина срока лишения свободы плохо отражает всю совокупность. Таким образом, если индивидуальные значения признака мало отличаются друг от друга, то средняя арифметическая будет достаточно показательной характеристикой свойств данной совокупности. В противном случае средняя арифметическая будет ненадежной характеристикой этой совокупности и применение ее на практике малоэффективно. Поэтому необходимо учитывать вариацию значений изучаемого признака.

Вариация – это различия в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени. Термин «вариация» имеет латинское происхождение – variatio, что означает различие, изменение, колеблемость. Она возникает в результате того, что индивидуальные значения признака складываются под совокупным влиянием разнообразных факторов (условий), которые по-разному сочетаются в каждом отдельном случае. Для измерения вариации признака применяются различные абсолютные и относительные показатели.

К основным показателям вариации относятся следующие:

1) размах вариации;

2) среднее линейное отклонение;

3) дисперсия;

4) среднее квадратическое отклонение;

5) коэффициент вариации.

Кратко остановимся на каждом из них.

Размах вариации R самый доступный по простоте расчета абсолютный показатель, который определяется как разность между самым большим и самым малым значениями признака у единиц данной совокупности:

Размах вариации (размах колебаний) – важный показатель колеблемости признака, но он дает возможность увидеть только крайние отклонения, что ограничивает область его применения. Для более точной характеристики вариации признака на основе учета его колеблемости используются другие показатели.

Среднее линейное отклонение представляет собой среднее арифметическое из абсолютных значений отклонений индивидуальных значений признака от средней и определяется по формулам:

1) для несгруппированных данных

2) для вариационного ряда

Однако наиболее широко применяемым показателем вариации является дисперсия . Она характеризует меру разброса значений изучаемого признака относительно его среднего значения. Дисперсия определяется как средняя из отклонений, возведенных в квадрат.

Простая дисперсия для не сгруппированных данных:

.

Взвешенная дисперсия для вариационного ряда:

Замечание. На практике для вычисления дисперсии лучше использовать следующие формулы:

Для простой дисперсии

.

Для взвешенной дисперсии

Среднее квадратическое отклонение - это корень квадратный из дисперсии:

Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше среднее квадратическое отклонение, тем, однороднее совокупность и тем лучше средняя арифметическая отражает собой всю совокупность.

Рассмотренные выше меры рессеяния (размах вариации, дисперсия, среднее квадратическое отклонение) являются абсолютными показателями, судить по которым о степени колеблемости признака не всегда возможно. В некоторых задачах необходимо использовать относительные показатели рассеяния, одним из которых является коэффициент вариации.

Коэффициент вариации – выраженное в процентах отношение среднего квадратического отклонения к средней арифметической:

Коэффициент вариации используют не только для сравнительной оценки вариации разных признаков или одного и того же признака в различных совокупностях, но и для характеристики однородности совокупности. Статистическая совокупность считается количественно однородной, если коэффициент вариации не превышает 33 % (для распределений, близких к нормальному распределению).

Пример. Имеются следующие данныео сроках лишения свободы 50 осужденных, доставленных для отбывания назначенного судом наказания в исправительное учреждение уголовно-исполнительной системы: 5, 4, 2, 1, 6, 3, 4, 3, 2, 2, 5, 6, 4, 3, 10, 5, 4, 1, 2, 3, 3, 4, 1, 6, 5, 3, 4, 3, 5, 12, 4, 3, 2, 4, 6, 4, 4, 3, 1, 5, 4, 3, 12, 6, 7, 3, 4, 5, 5, 3.

1. Построить ряд распределения по срокам лишения свободы.

2. Найти среднее значение, дисперсию и среднее квадратическое отклонение.

3. Вычислить коэффициент вариации и сделать заключение об однородности или неоднородности изучаемой совокупности.

Решение. Для построения дискретного ряда распределения необходимо определить варианты и частоты. Варианта в данной задаче – это срок лишения свободы, а частоты – численность отдельных вариант. Рассчитав частоты, получим следующий дискретный ряд распределения:

Найдем среднее значение и дисперсию. Поскольку статистические данные представлены дискретным вариационным рядом, то для их вычисления будем использовать формулы среднего арифметического взвешенного и дисперсии. Получим:

= = 4,1;

= 5,21.

Теперь вычисляем среднее квадратическое отклонение:

Находим коэффициент вариации:

Следовательно, статистическая совокупность количественно неоднородна.

Средняя арифметическая простая

Средние величины

Большое распространение в статистике имеют средние величины.

Средняя величина - это обобщающий показатель, в котором находят выражение действия общих условий, закономерностей развития изучаемого явления.

Статистические средние рассчитываются на основе массовых данных правильно статистически организованного наблюдения (сплошного и выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Например, если рассчитывать среднюю заработную плату в акционерных обществах и на госпредприятиях, а результат распространить на всю совокупность, то средняя фиктивна, так как рассчитана по неоднородной совокупности, и такая средняя теряет всякий смысл.

При помощи средней происходит как бы сглаживание различий в величине признака, которые возникают по тем или иным причинам у отдельных единиц наблюдения.

Например, средняя выработка отдельного продавца зависит от многих причин: квалификации, стажа, возраста, формы обслуживания, здоровья и т.д. Средняя выработка отражает общую характеристику всей совокупности.

Средняя величина измеряется в тех же единицах, что и сам признак.

Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному признаку. Чтобы получить полное и всестороннее представление об изучаемой совокупности по ряду существенных признаков, необходимо располагать системой средних величин, которые могут описать явление с разных сторон.

Существуют различные виды средних:

    средняя арифметическая;

    средняя гармоническая;

    средняя геометрическая;

    средняя квадратическая;

    средняя кубическая.

Средние всех перечисленных выше видов, в свою очередь, делятся на простые (невзвешенные) и взвешенные.

Рассмотрим виды средних, которые используются в статистике.

Средняя арифметическая простая (невзвешенная) равна сумме отдельных значений признака, деленной на число этих значений.

Отдельные значения признака называют вариантами и обозначают через х i (
); число единиц совокупности обозначают через n, среднее значение признака – через . Следовательно, средняя арифметическая простая равна:

или

Пример 1. Таблица 1

Данные о производстве рабочими продукции А за смену

В данном примере варьирующий признак - выпуск изделий за смену.

Численные значения признака (16, 17 и т. д.) называют вариантами. Определим среднюю выработку продукции рабочими данной группы:

шт.

Простая средняя арифметическая применяется в случаях, когда имеются отдельные значения признака, т.е. данные не сгруппированы. Если данные представлены в виде рядов распределения или группировок, то средняя исчисляется иначе.

Средняя арифметическая взвешенная

Средняя арифметическая взвешенная равна сумме произведений каждого отдельного значения признака (варианта) на соответствующую частоту, деленной на сумму всех частот.

Число одинаковых значений признака в рядах распределения называется частотой или весом и обозначается через f i .

В соответствии с этим, средняя арифметическая взвешенная выглядит так:

или

Из формулы видно, что средняя зависит не только от значений признака, но и от их частот, т.е. от состава совокупности, от ее структуры.

Пример 2. Таблица 2

Данные о заработной плате рабочих

По данным дискретного ряда распределения видно, что одни и те же значения признака (варианты) повторяются несколько раз. Так, варианта х 1 встречается в совокупности 2 раза, а варианта х 2 - 6 раз и т.д.

Вычислим среднюю заработную плату одного рабочего:

Фонд заработной платы по каждой группе рабочих равен произведению варианты на частоту (
), а сумма этих произведений дает общий фонд заработной платы всех рабочих (
).

Если бы расчет был выполнен по формуле простой средней арифметической, средний заработок был бы равен 3 000 руб. (). Сравнивая полученный результат с исходными данными, очевидно, что средняя заработная плата должна быть существенно выше (больше половины рабочих получают заработную плату выше 3 000 руб.). Поэтому расчет по простой средней арифметической в таких случаях будет ошибочным.

Статистический материал в результате обработки может быть представлен не только в виде дискретных рядов распределения, но и в виде интервальных вариационных рядов с закрытыми или открытыми интервалами.

Рассмотрим расчет средней арифметической для таких рядов.

Среднее значение это:

Среднее значение

Сре́днее значе́ние - числовая характеристика множества чисел или функций; - некоторое число, заключённое между наименьшим и наибольшим из их значений.

  • 1 Основные сведения
  • 2 Иерархия средних значений в математике
  • 3 В теории вероятностей и статистике
  • 4 См. также
  • 5 Примечания

Основные сведения

Исходным пунктом становления теории средних величин явилось исследование пропорций школой Пифагора. При этом не проводилось строгого различия между понятиями средней величины и пропорции. Значительный толчок развитию теории пропорций с арифметической точки зрения был дан греческими математиками - Никомахом Герасским (конец I - начало II в. н. э.) и Паппом Александрийским (III в. н. э.). Первым этапом развития понятия средней является этап, когда средняя стала считаться центральным членом непрерывной пропорции. Но понятие средней как центрального значения прогрессии не дает возможности вывести понятие средней по отношению к последовательности n членов, независимо от того, в каком порядке они следуют друг за другом. Для этой цели необходимо прибегнуть к формальному обобщению средних. Следующий этап - переход от непрерывных пропорций к прогрессиям - арифметической, геометрической и гармонической.

В истории статистики впервые широкое употребление средних величин связано с именем английского ученого У. Петти. У. Петти один из первых пытался придать средней величине статистический смысл, связав её с экономическими категориями. Но описания понятия средней величины, его выделения Петти не произвел. Родоначальником теории средних величин принято считать А. Кетле. Он одним из первых начал последовательно разрабатывать теорию средних величин, пытаясь подвести под неё математическую базу. А. Кетле выделял два вида средних величин - собственно средние и средние арифметические. Собственно средние представляют вещь, число, действительно существующие. Собственно средние или средние статистические должны выводиться из явлений однокачественных, одинаковых по своему внутреннему значению. Средние арифметические - числа, дающие возможно близкое представление о многих числах, различных, хотя и однородных.

Каждый из видов средней может выступать либо в форме простой, либо в форме взвешенной средней. Правильность выбора формы средней вытекает из материальной природы объекта исследования. Формулы простых средних применяются в случае, если индивидуальные значения усредняемого признака не повторяются. Когда в практических исследованиях отдельные значения изучаемого признака встречаются несколько раз у единиц исследуемой совокупности, тогда частота повторений индивидуальных значений признака присутствует в расчетных формулах степенных средних. В этом случае они называются формулами взвешенных средних.

Wikimedia Foundation. 2010.

Большое распространение в статистике имеют средние величины. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др.

Средняя - это один из распространенных приемов обобщений. Правильное понимание сущности средней определяет ее особую значимость в условиях рыночной экономики, когда средняя через единичное и случайное позволяет выявить общее и необходимое, выявить тенденцию закономерностей экономического развития.

Средняя величина - это обобщающие показатели, в которых находят выражение действия общих условий, закономерностей изучаемого явления.

Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения (сплошного и выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Например, если рассчитывать среднюю заработную плату в кооперативах и на госпредприятиях, а результат распространить на всю совокупность, то средняя фиктивна, так как рассчитана по неоднородной совокупности, и такая средняя теряет всякий смысл.

При помощи средней происходит как бы сглаживание различий в величине признака, которые возникают по тем или иным причинам у отдельных единиц наблюдения.

Например, средняя выработка продавца зависит от многих причин: квалификации, стажа, возраста, формы обслуживания, здоровья и т.д.

Средняя выработка отражает общее свойство всей совокупности.

Средняя величина является отражением значений изучаемого признака, следовательно, измеряется в той же размерности, что и этот признак.

Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному признаку. Чтобы получить полное и всестороннее представление об изучаемой совокупности по ряду существенных признаков, в целом необходимо располагать системой средних величин, которые могут описать явление с разных сторон.

Существуют различные средние:

    средняя арифметическая;

    средняя геометрическая;

    средняя гармоническая;

    средняя квадратическая;

    средняя хронологическая.

Рассмотрим некоторые виды средних, которые наиболее часто используются в статистике.

Средняя арифметическая

Средняя арифметическая простая (невзвешенная) равна сумме отдельных значений признака, деленной на число этих значений.

Отдельные значения признака называют вариантами и обозначают через х (); число единиц совокупности обозначают через n, среднее значение признака - через. Следовательно, средняя арифметическая простая равна:

По данным дискретного ряда распределения видно, что одни и те же значения признака (варианты) повторяются несколько раз. Так, варианта х встречается в совокупности 2 раза, а варианта х-16 раз и т.д.

Число одинаковых значений признака в рядах распределения называется частотой или весом и обозначается символом n.

Вычислим среднюю заработную плату одного рабочего в руб.:

Фонд заработной платы по каждой группе рабочих равен произведению варианты на частоту, а сумма этих произведений дает общий фонд заработной платы всех рабочих.

В соответствии с этим, расчеты можно представить в общем виде:

Полученная формула называется средней арифметической взвешенной.

Статистический материал в результате обработки может быть представлен не только в виде дискретных рядов распределения, но и в виде интервальных вариационных рядов с закрытыми или открытыми интервалами.

Исчисление средней по сгруппированным данным производится по формуле средней арифметической взвешенной:

В практике экономической статистики иногда приходится исчислять среднюю по групповым средним или по средним отдельных частей совокупности (частным средним). В таких случаях за варианты (х) принимаются групповые или частные средние, на основании которых исчисляется общая средняя как обычная средняя арифметическая взвешенная.

Основные свойства средней арифметической .

Средняя арифметическая обладает рядом свойств:

1. От уменьшения или увеличения частот каждого значения признака х в п раз величина средней арифметической не изменится.

Если все частоты разделить или умножить на какое-либо число, то величина средней не изменится.

2. Общий множитель индивидуальных значений признака может быть вынесен за знак средней:

3. Средняя суммы (разности) двух или нескольких величин равна сумме (разности) их средних:

4. Если х = с, где с - постоянная величина, то
.

5. Сумма отклонений значений признака Х от средней арифметической х равна нулю:

Средняя гармоническая.

Наряду со средней арифметической, в статистике применяется средняя гармоническая величина, обратная средней арифметической из обратных значений признака. Как и средняя арифметическая, она может быть простой и взвешенной.

Характеристиками вариационных рядов, наряду со средними, являются мода и медиана.

Мода - это величина признака (варианта), наиболее часто повторяющаяся в изучаемой совокупности. Для дискретных рядов распределения модой будет значение варианта с наибольшей частотой.

Для интервальных рядов распределения с равными интервалами мода определяется по формуле:

где
- начальное значение интервала, содержащего моду;

- величина модального интервала;

- частота модального интервала;

- частота интервала, предшествующего модальному;

- частота интервала, следующего за модальным.

Медиана - это варианта, расположенная в середине вариационного ряда. Если ряд распределения дискретный и имеет нечетное число членов, то медианой будет варианта, находящаяся в середине упорядоченного ряда (упорядоченный ряд - это расположение единиц совокупности в возрастающем или убывающем порядке).

Средняя величина является наиболее ценной с аналитической точ­ки зрения и универсальной формой выражения статистических пока­зателей. Наиболее распространенная средняя - средняя арифметичес­кая - обладает рядом математических свойств, которые могут быть использованы при ее расчете. В то же время при исчислении конкрет­ной средней всегда целесообразно опираться на ее логическую фор­мулу, представляющую собой отношение объема признака к объему совокупности. Для каждой средней существует только одно истинное исходное соотношение, для реализации которого, в зависимости от имеющихся данных, могут потребоваться различные формы средних. Однако во всех случаях, когда характер осредняемой величины под­разумевает наличие весов, нельзя вместо взвешенных формул сред­них использовать их невзвешенные формулы.

Средняя величина - это наиболее характерное для совокупности значение признака и распределенный равными долями между единицами совокупности раз­мер признака совокупности.

Признак, для которого рассчитывается средняя величи­на, носит название осредняемый .

Средняя величина - показатель, рассчитываемый сопоставлением абсолютных или относительных величин. Среднюю величину обозначают

Средняя величина отражает влияние всех факторов, влия­ющих на исследуемое явление, и является для них равнодей­ствующей. Другими словами, погашая индивидуальные откло­нения и устраняя влияние случаев, средняя величина, отражая общую меру результатов этого действия, выступает общей закономерностью изучаемого явления.

Условия применения средних величин:

Ø однородность исследуемой совокупности. Если некоторые подверженные влиянию случайного фактора элементы совокупности имеют значитель­но отличающиеся от остальных величины изуча­емого признака, то данные элементы повлияют на размер средней для данной совокупности. В этом случае средняя не будет выражать наиболее ти­пичную для совокупности величину признака. Если исследуемое явление неоднородно, требуется его разбивка на содержащие однородные элементы группы. В данном случае рассчитывают средние по группам - груп­повые средние, выражающие наиболее характерную вели­чину явления в каждой группе, а затем рассчитывается об­щая средняя величина для всех элементов, характеризующая явление в целом. Она рассчитывается как средняя из группо­вых средних, взвешенных по числу включенных в каждую группу элементов совокупности;

Ø достаточное количество единиц в совокупности;

Ø максимальное и минимальное значения признака в изучаемой совокупности.

Средняя величина (показатель) – это обобщенная количественная характеристика признака в систематической совокупности в конкретных условиях места и времени .

В статистике применяется следующие формы (виды) средних величин, называемых степенными и структурными:

Ø средняя арифметическая (простая и взвешенная);

простая

Метод средних величин

3.1 Сущность и значение средних величин в статистике. Виды средних величин

Средней величиной в статистике называется обобщенная характеристика качественно однородных явлений и процессов по какому-либо варьирующему признаку, которая показывает уровень признака, отнесенный к единице совокупности. Средняя величина абстрактна, т.к. характеризует значение признака у некоторой обезличенной единицы совокупности. Сущность средней величины состоит в том, что через единичное и случайное выявляется общее и необходимое, т. е. тенденция и закономерность в развитии массовых явлений. Признаки, которые обобщают в средних величинах, присущи всем единицам совокупности . Благодаря этому средняя величина имеет большое значение для выявления закономерностей, присущих массовым явлениям и не заметных в отдельных единицах совокупности

Общие принципы применения средних величин :

    необходим обоснованный выбор единицы совокупности, для которой рассчитывается средняя величина;

    при определении средней величины нужно исходить из качественного содержания осредняемого признака, учитывать взаимосвязь исследуемых признаков, а также имеющиеся для расчета данные;

    средние величины должны рассчитываться по качественно однородным совокупностям, которые получают методом группировок, предполагающим расчёт системы обобщающих показателей;

    общие средние должны подкрепляться групповыми средними.

В зависимости от характера первичных данных, области применения и способа расчета в статистике различают следующие основные виды средних :

1) степенные средние (средняя арифметическая, гармоническая, геометрическая, средняя квадратическая и кубическая);

2) структурные (непараметрические) средние (мода и медиана).

В статистике правильную характеристику изучаемой совокупности по варьирующему признаку в каждом отдельном случае дает только вполне определенный вид средней. Вопрос о том, какой вид средней необходимо применить в отдельном случае, разрешается путем конкретного анализа изучаемой совокупности, а также исходя из принципа осмысленности результатов при суммировании или при взвешивании. Эти и другие принципы в статистике выражаютсятеорией средних .

Например, средняя арифметическая и средняя гармоническая используются для характеристики среднего значения варьирующего признака у изучаемой совокупности. Средняя геометрическая применяется только при исчислении средних темпов динамики, а средняя квадратическая только при исчислении показателей вариации.

Формулы расчёта средних величин представлены в таблице 3.1.

Таблица 3.1 – Формулы расчёта средних величин

Виды средних величин

Формулы расчёта

простая

взвешенная

1. Средняя арифметическая

2. Средняя гармоническая

3. Средняя геометрическая

4. Средняя квадратическая

Обозначения: - величины, для которых исчисляется средняя; - средняя, где черта сверху свидетельствует о том, что имеет место осреднение индивидуальных значений; - частота (повторяемость индивидуальных значений признака).

Очевидно, что различные средние выводятся из общей формулы степенной средней (3.1) :

, (3.1)

при k = + 1 - средняя арифметическая; k = -1 - средняя гармоническая; k = 0 - средняя геометрическая; k = +2 - средняя квадратическая.

Средние величины бывают простые и взвешенные. Взвешенными средними называются величины, которые учитывают, что некоторые варианты значений признака могут иметь различную численность; в связи с этим каждый вариант приходится умножать на эту численность. «Весами» при этом выступают числа единиц совокупности в разных группах, т.е. каждый вариант «взвешивают» по своей частоте. Частоту f называют статистическим весом или весом средней .

В итоге правильный выбор средней величины предполагает такую последовательность:

а) установление обобщающего показателя совокупности;

б) определение для данного обобщающего показателя математического соотношения величин;

в) замена индивидуальных значений средними величинами;

г) расчет средней с помощью соответствующего уравнения.

3.2 Средняя арифметическая и её свойства и техника исчисления. Средняя гармоническая

Средняя арифметическая – самый распространенный вид средней величины; она исчисляется в тех случаях, когда объем усредняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.

Важнейшие свойства средней арифметической :

1. Произведение средней на сумму частот всегда равно сумме произведений вариант (отдельных значений) на частоты.

2. Если от каждой варианты отнять (прибавить) какое-либо произвольное число, то новая средняя уменьшится (увеличится) на то же число.

3. Если каждую варианту умножить (разделить) на какое-то произвольное число, то новая средняя увеличится (уменьшится) во столько же раз

4. Если все частоты (веса) разделить или умножить на какое-либо число, то средняя арифметическая от этого не изменится.

5. Сумма отклонений отдельных вариантов от средней арифметической всегда равняется нулю.

Можно из всех значений признака вычесть произвольную постоянную величину (лучше значение серединной варианты или варианты с наибольшей частотой), полученные разности сократить на общий множитель (лучше на величину интервала), а частоты выразить частностями (в процентах) и исчисленную среднюю умножить на общий множитель и прибавить произвольную постоянную величину. Этот способ расчета средней арифметической называется способом расчета от условного нуля .

Средняя геометрическая находит свое применение при определении средних темпов роста (средних коэффициентов роста), когда индивидуальные значения признака представлены в виде относительных величин. Она используется также, если необходимо найти среднюю между минимальным и максимальным значениями признака (например, между 100 и 1000000).

Средняя квадратическая применяется для измерения вариации признака в совокупности (расчета среднего квадратического отклонения).

В статистике действует правило мажорантности средних:

Х гарм. < Х геом. < Х арифм. < Х квадр. < Х куб.

3.3 Структурные средние величины (мода и медиана)

Для определения структуры совокупности используют особые средние показатели, к которым относятся медиана и мода или так называемые структурные средние. Если средняя арифметическая рассчитывается на основе использования всех вариантов значений признака, то медиана и мода характеризуют величину того варианта, который занимает определенное среднее положение в ранжированном вариационном ряду

Мода - наиболее типичное, чаще всего встречаемое значение признака. Для дискретного ряда модой будет являться вариант с наибольшей частотой. Для определения моды интервального ряда сначала определяют модальный интервал (интервал, имеющий наибольшую частоту). Затем в пределах этого интервала находят то значение признака, которое может являться модой.

Чтобы найти конкретное значение моды интервального ряда, необходимо использовать формулу (3.2)

(3.2)

где Х Мо - нижняя граница модального интервала; i Мо - величина модального интервала; f Мо - частота модального интервала; f Мо-1 - частота интервала, предшествующего модальному; f Мо+1 - частота интервала, следующего за модальным.

Мода имеет широкое распространение в маркетинговой деятельности при изучении покупательского спроса, особенно при определении пользующихся наибольшим спросом размеров одежды и обуви, при регулировании ценовой политики.

Медиана - значение варьирующего признака, приходящееся на середину ранжированной совокупности. Дляранжированного ряда с нечетным числом индивидуальных величин (например, 1, 2, 3, 6, 7, 9, 10) медианой будет величина, которая расположена в центре ряда, т.е. четвёртая величина - 6. Дляранжированного ряда с четным числом индивидуальных величин (например, 1, 5, 7, 10, 11, 14) медианой будет средняя арифметическая величина, которая рассчитывается из двух смежных величин. Для нашего случая медиана равна (7+10)/2= 8,5.

Т. о., для нахождения медианы сначала необходимо определить ее порядковый номер (ее положение в ранжированном ряду) по формулам (3.3):

(если частот нет)

N Me =
(если частоты есть) (3.3)

где n - число единиц в совокупности.

Численное значение медианы интервального ряда определяют по накопленным частотам в дискретном вариационном ряду. Для этого сначала следует указать интервал нахождения медианы в интервальном ряду распределения. Медианным называют первый интервал, где сумма накопленных частот превышает половину наблюдений от общего числа всех наблюдений.

Численное значение медианы обычно определяют по формуле (3.4)

(3.4)

где x Ме - нижняя граница медианного интервала; iМе - величина интервала; SМе -1 - накопленная частота интервала, которая предшествует медианному; fМе - частота медианного интервала.

Внутри найденного интервала расчет медианы производится также по формуле Ме = xl е, где второй множитель в правой части равенства показывает расположение медианы внутри медианного интервала, а х - длина этого интервала. Медиана делит вариационный ряд пополам по частотам. Определяют ещеквартили , которые делят вариационный ряд на 4 равновеликие по вероятности части, идецили , делящие ряд на 10 равновеликих частей.