Что добывают в тихом океане. Полезные ископаемые мирового океана

По мере истощения полезных ископаемых на суше добыча их из океана будет приобретать все большее и большее значение, так как океанское дно представляет собой колоссальную, еще почти не тронутую кладовую. Некоторые полезные ископаемые открыто лежат на поверхности морского дна, иногда почти у самого берега или на сравнительно небольшой глубине. Естественно, что такие месторождения начинают разрабатывать в первую очередь, так как здесь можно использовать лишь слегка модернизированное обычное оборудование.

В ряде развитых стран запасы руды, минерального топлива и некоторых видов строительных материалов настолько истощились, что их приходится импортировать. По всем океанам курсируют огромные рудовозы, перевозящие с одного континента на другой закупленные руду и каменный уголь. В емкостях танкеров и супертанкеров транспортируют нефть. Между тем зачастую совсем рядом имеются свои источники минеральных ресурсов, но они скрыты под слоем океанской воды.

Большой интерес для промышленной добычи в зоне шельфа представляют различные строительные материалы — песок, гравий, щебень. Как правило, они отличаются высокими качествами, ибо сама природа позаботилась об их сортировке по размерам составляющих частиц. Запасы такого рода стройматериалов в зоне шельфа почти неограниченны, и потому их добычу ведут многие приморские страны. Только в США из моря ежегодно получают 0,5 миллиарда тонн песка и гравия для строительных нужд. Транспортировка на берег или погрузка материала на баржи осуществляется по трубам в смеси с водой, поэтому стоимость его относительно невысока.

В некоторых теплых морях огромные участки грунта состоят из напластований раковин мелких двустворчатых моллюсков. Это почти чистая известь, пригодная для использования в строительном деле, но главным образом она идет на подкормку домашних птиц. Большие запасы битой «ракуши» имеются в Азовском море. Ежегодно тысячи тонн этого ценного материала отправляются отсюда на птицеводческие хозяйства страны. Интересно, что запасы «ракуши» при этом практически не уменьшаются — раковины отмершего поколения моллюсков восполняют нанесенный ущерб.

Ближе к внешнему краю шельфа во многих частях Мирового океана обнаружены конкреции, содержащие большое количество фосфора. Их запасы еще окончательно не разведаны и не подсчитаны, но, по некоторым данным, они достаточно велики. Так, у берегов Калифорнии имеется месторождение около 60 миллионов тонн. Хотя содержание фосфора в конкрециях всего 20—30 процентов, добыча его с морского дна экономически вполне выгодна. Обнаружены фосфаты и на вершинах некоторых подводных гор в Тихом океане. Главная цель добычи этого минерала из моря — производство удобрений; но, кроме того, он используется и в химической промышленности. В качестве примесей фосфаты несут в себе также ряд редких металлов, в частности цирконий.

На отдельных участках шельфа морское дно покрыто зеленым «песком» — водной окисью силикатов железа и калия, известной в минералогии под названием глауконита. Этот ценный материал находит применение в химической промышленности, где из него получают поташ и калийные удобрения. В небольших количествах глауконит содержит также рубидий, литий и бор.

Иногда океан преподносит исследователю совершенно удивительные сюрпризы. Так, неподалеку от Шри Ланки на глубине тысячи метров были обнаружены скопления баритовых конкреций, на три четверти состоящих из сульфита бария. Несмотря на большую глубину, разработка месторождения сулит значительные выгоды, так как в этом ценном сырье постоянно испытывают нужду химическая и пищевая промышленность. Сульфит бария добавляют в качестве утяжелителя к глинистым растворам при бурении нефтяных скважин.

В 1873 году во время кругосветной английской экспедиции на «Челленджере» впервые со дна океана были подняты странные темные «камешки». Химический анализ этих конкреций показал высокое содержание в них железа и марганца. В настоящее время известно, что ими покрыты значительные пространства океанского дна на глубине от 500 метров до 5—6 километров, но наибольшие их скопления сосредоточены все же глубже двух-трех километров. Железомарганцевые конкреции имеют округлую, лепешковидную или неправильную форму при средней величине 3—12 сантиметров. Во многих районах океана дно сплошь покрыто ими и напоминает по виду булыжную мостовую. Кроме двух указанных металлов, конкреции содержат никель, кобальт, медь, молибден, то есть представляют собой многокомпонентные руды.

По последним подсчетам, мировой запас железо-марганцевых конкреций составляет 1500 миллиардов тонн, что намного превосходит запасы всех ныне разрабатываемых рудников. Особенно велики залежи железомарганцевой руды в Тихом океане, где дно местами устлано конкрециями сплошным ковром и в несколько слоев. Таким образом, в смысле обеспечения железом и другими металлами человечество имеет весьма благоприятные перспективы; остается лишь наладить добычу.

Впервые начала это осуществлять в 1963 году одна американская фирма, ранее специализировавшаяся в области судостроения. Имея в своем распоряжении хорошую производственную базу, кораблестроители создали устройство, предназначенное для сбора конкреций на относительно малых глубинах, и испытали его у берегов Флориды. Техническая сторона предприятия вполне удовлетворила конструкторов — они добились получения конкреций в промышленном масштабе с глубины 500—800 метров, но экономически дело оказалось невыгодным. И вовсе не потому, что добыча руды обходилась слишком дорого. Беда заключалась в другом — оказалось, что мелководные атлантические конкреции содержат гораздо меньше железа, чем в аналогичных месторождениях на глубинах Тихого океана.

Для работы на тихоокеанских глубинах решили приспособить старый рудовоз водоизмещением 7500 тонн «Глубоководный горняк». Его оборудовали гидравлической драгой новой конструкции. Драга эта состоит из коллектора (сборника) большого диаметра, который опускают на дно и соединяют с поверхностью системой труб. В коллекторе создается мощный восходящий воздушно-водяной поток, который засасывает конкреции и увлекает их наверх, прямо на борт судна. Производительность установки при работе на глубине 800 метров до 60 тонн конкреций в час.

От кораблестроительной фирмы уже отпочковалось дочернее «Глубоководное предприятие», которое проектирует создание установки для работы на глубине до 5 километров. Конструкторам предстоит решить много сложных технических проблем. Одна из них заключается в обеспечении прочности подъемной трубы, чтобы она не развалилась под влиянием собственной тяжести. Немало хлопот предстоит и в создании дистанционно управляемого коллектора, который необходимо устанавливать на строго определенном расстоянии от дна.

По предварительным подсчетам, «Глубоководное предприятие» начнет приносить прибыль лишь после вложения в него двухсот миллионов долларов — настолько сложную и дорогостоящую технику предполагают применить американские конструкторы. Однако добиться удовлетворительных результатов можно и более простыми средствами, нужно только не забывать о старом полушуточном-полусерьезном афоризме: «Нет ничего сложнее простоты!»

Остроумный способ, позволяющий поднимать с океанского дна конкреции без больших затрат, предложили японцы. В их конструкции нет ни коллекторов, ни труб, ни мощных насосов. Конкреции подбираются со дна моря проволочными корзинами, похожими на те, что используют в универсамах, но, конечно, более прочными. Серии таких корзин укреплены на длинном тросе, имеющем вид гигантской петли, верхняя часть которой находится на судне, а нижняя касается дна. С помощью барабана судовой лебедки трос непрерывно движется вверх в носовой части судна и сбегает в море за его кормой. Прикрепленные к нему корзины подцепляют со дна конкреции, выносят их на поверхность и вываливают в трюм, после чего опускаются за новой порцией руды. Система дала хорошие результаты на глубине до 1400 метров, но она вполне пригодна и для работы на глубине 6 километров.

В умах изобретателей родилась и еще одна на первый взгляд совершенно фантастическая конструкция, которая уже существует на чертежах, но пока еще не воплощена в жизнь. Обычно конкреции лежат на более или менее ровном и достаточно твердом грунте, позволяющем пустить по нему скрепер на гусеничном ходу. Наполнив балластные емкости забортной водой, скрепер погружается на дно и ползает по нему на гусеницах, сгребая конкреции широким ножом в объемистый бункер. Энергия для работы подается по кабелю с судна, оттуда же осуществляется управление, причем оператор руководствуется системой подводного телевидения. По заполнении бункеров из балластных цистерн удаляют воду, и скрепер поднимается к поверхности. При современных технических возможностях построить такую машину вполне реально. Здесь еще раз уместно подчеркнуть, что проектирование подводных промышленных предприятий будущего весьма далеко от создания пресловутых подводных городов.

К числу наиболее богатых морских месторождений, которые успешно разрабатывают в наши дни, относятся титаномагнетитовые пески у берегов Японии и оловоносные (касситеритовые) пески вблизи Малайзии и Индонезии. Подводные россыпи оловянной руды представляют собой шельфовое продолжение крупнейшего в мире наземного оловоносного пояса, протянувшегося от Индонезии до Таиланда. Большая часть разведанных запасов этого олова сосредоточена в береговых долинах и на их подводном продолжении. Более тяжелые продуктивные пески, содержащие от 200 до 600 граммов олова на кубометр породы, концентрируются в понижениях местности. Как показали результаты бурения в море, их толщина местами достигает 20 метров.

Далеко за Полярным кругом, на 72-м градусе северной широты, на Ванькиной губе моря Лаптевых, недавно введено в действие первое в нашей стране плавучее предприятие по добыче олова. Оловоносный грунт с глубины до 100 метров извлекается земснарядом, способным вести добычу не только на чистой воде, но и подо льдом. Первичная переработка породы производится плавающей обогатительной фабрикой, размещенной на одном из судов флотилии. Заполярный комбинат может работать круглогодично.

Разработка подводных россыпей дает значительное количество алмазов, янтаря и драгоценных металлов — золота и платины. Подобно оловянным рудам, эти россыпи служат продолжением наземных и потому не уходят далеко под воду.

Единственное месторождение платины в США находится на северо-западном побережье Аляски. Оно было обнаружено в 1926 году и уже на следующий год начало эксплуатироваться. Старатели, продвигаясь вдоль мелких речек, подошли вплотную к побережью, а с 1937 года работы начались уже непосредственно в заливе. Глубина, с которой извлекают породу, несущую крупицы платины, постоянно увеличивается.

Мировой известностью пользуются морские россыпи Австралии и Тасмании, протянувшиеся более чем на тысячу километров. Здесь добывают платину, золото и некоторые редкоземельные металлы.

В ряде случаев морские россыпи характеризуются гораздо более высоким содержанием ценных минералов, чем аналогичные месторождения на суше. Волны постоянно взмучивают и перемешивают породу, а течение уносит более легкие частицы, в результате чего море работает как природная обогатительная фабрика. У берегов Южной Индии и Шри Ланки протянулись мощные ильменитовые и моноцитовые пески, содержащие железотитановую руду и фосфаты редкозе- мельных элементов цезия и лантана. Многокиломет- ровая полоса обогащенных песков прослеживается в море на расстоянии до полутора километров от берега. Мощность ее продуктивного слоя местами достигает 8 метров, причем содержание тяжелых минералов иногда доходит до 95 процентов.

Одно из крупнейших месторождений алмазов, как известно, находится в ЮАР. В 1866 году маленькая девочка из бедного голландского поселения, играя на берегу реки Оранжевой, нашла в песке сверкающий камешек. Игрушка понравилась заезжему господину, и мать девочки, мадам Джекобе, подарила гостю блестящую безделушку. Новый владелец показал курьезную находку одному из приятелей, и тот узнал в ней алмаз. Через некоторое время госпожа Джекобе была ошеломлена неожиданно свалившимся на нее богатством — она получила целых 250 фунтов стерлингов, ровно половину стоимости блестящего камушка, найденного ее дочкой.

Вскоре Южную Африку поразила «алмазная лихорадка». Теперь доходы от разработки алмазных копей составляют весьма заметную статью в бюджете ЮАР. Изыскания 1961 года показали, что алмазы встречаются в аллювиальных отложениях, состоящих из песка, гравия и валунов не только на суше, но и под водой на глубине до 50 метров. Первая же проба морского грунта весом 4,5 тонны содержала 5 алмазов общей стоимостью 450 долларов. В 1965 году из моря на этом участке, через сто лет после находки первого алмаза, было добыто почти 200 тысяч каратов алмазов.

50—60 миллионов лет назад север Европы был покрыт сплошными хвойными лесами. Здесь росли четыре вида сосны и один вид пихты, которые теперь уже не существуют. Из трещин в коре деревьев по мощным стволам стекала смола. Ее застывшие капли и комки во время половодья попадали в реки и выносились в море. В соленой воде на протяжении веков смола твердела, превращаясь в янтарь.

Самые мощные россыпи янтаря находятся на побережье Балтийского моря вблизи Калининграда. Красивые желтые «камни» скрыты от глаз в синеватых мелкозернистых глауконитовых песках морского происхождения, поверх которых образовались позднейшие напластования. Там, где янтароносный слой выходит к морю, прибой постоянно разрушает его, и тогда куски породы попадают в воду. Волны легко размывают песчано-глинистые комья и освобождают заключенный в них янтарь. Будучи лишь немного тяжелее воды, в спокойную погоду он падает на дно, но при самом слабом волнении приходит в движение.

Подобно любым другим легким предметам, янтарь рано или поздно выбрасывается волнами на пляж. Здесь его и находили древние жители Балтийского побережья. К янтарному берегу приплывали суда финикийцев и увозили отсюда огромное количество выменянного «электрона». Археологические находки позволяют проследить длинный путь, по которому янтарь и изделия из него, благодаря меновой торговле, доходили от Балтийского моря до Средиземного.

Ювелирная ценность янтаря сохранилась до наших дней. Для изделий отбирают самые лучшие, прозрачные и крупные куски, тогда как основная масса мелких янтарей используется в промышленности. Этот материал идет на изготовление высококачественных лаков и красок, используется как изолятор в радиопромышленности, из него готовят биостимуляторы и антисептические средства. Современный янтарный комбинат представляет собой механизированное предприятие, на котором породу промывают и обогащают, а извлеченный ценный материал сортируют и подвергают дальнейшей обработке. В 1980 году в Калининграде создан музей янтаря, в котором представлены изделия из этого материала и уникальные находки.

Часть месторождений полезных ископаемых скрыта в недрах морского дна. Их разработка по сравнению с россыпями технически более затруднена. В простейшем случае вскрытие рудного пласта производится с берега. С этой целью проходят вертикальный ствол нужной глубины, а затем в сторону моря прокладывают горизонтальные или наклоненные ходы, по которым и добираются до месторождения. Так можно поступать, когда место разработки находится недалеко от берега. Подобные шахты, забои которых расположены под морским дном, имеются в Австралии, Англии, Канаде, США, Франции и Японии. В них добываются главным образом каменный уголь и железная руда. Один из крупнейших рудников мира, разрабатывающий «морское железорудное месторождение», расположен на маленьком острове в проливе Белл-Айл. Отдельные его участки уходят далеко от берега, причем над забоями располагается 300-метровая толща породы и стометровый слой воды. Годовая продукция шахты — 3 миллиона тонн.

Подсчитано, что морское дно у берегов Японии хранит не менее 3 миллиардов тонн угля, ежегодно из этого запаса извлекают 400 тысяч тонн.

Если месторождение обнаруживают в удалении от берега, вскрывать его описанным способом экономически невыгодно. В этом случае насыпают искусственный остров и через его толщу проникают к полезным ископаемым. Такой остров был создан в Японии на расстоянии двух километров от берега. В 1954 году через него проложили вертикальный ствол шахты «Мики».

Опыт строительства подводных туннелей позволяет использовать их не только в качестве транспортных артерий, но и для того, чтобы подобраться по морскому дну поближе к запасам полезных ископаемых. Готовые железобетонные секции туннеля укладывают на дно и из последней секции начинают вести проходку шахты.

При значительном удалении от берега и на достаточной глубине придется обойтись без туннеля. В этом случае предполагается вертикально установить на дно железобетонную трубу большого диаметра и затем удалять грунт изнутри. По мере выработки труба под влиянием собственной тяжести несколько опустится. Извлеченный грунт никуда отвозить не нужно, его просто выбрасывают наружу, и он будет оседать вокруг трубы, создавая насыпь, препятствующую проникновению внутрь трубы морской воды. По окончании строительства по этой трубе в шахту будут опускаться горняки, а наверх подниматься руда или уголь.

Чтобы не поднимать добытую руду на поверхность океана, одна английская фирма разработала проект подводного атомного рудовоза. Хотя такое судно еще не построено, оно уже получило имя «Моби Дик» в честь легендарного белого кашалота, описанного в одноименном романе американского писателя Г. Мел-вилла. Подводный рудовоз сможет перевозить за рейс до 28 тысяч тонн руды со скоростью 25 узлов.

Разработка полезных ископаемых, скрытых в недрах морского дна, требует беспрерывного контроля за проникающей в шахту водой, которая легко может просочиться по трещинам. Опасность затопления усиливается в сейсмически активных районах. Так, на некоторых морских шахтах Японии замечено, что после каждого землетрясения приток воды увеличивается примерно в три раза. Больше внимания приходится обращать и на возможность обрушивания породы, поэтому в ряде морских шахт, особенно там, где забои отделены от воды небольшим слоем породы, приходится ограничивать выем, оставляя часть рудоносного слоя в качестве опор.

Большой практический опыт, накопленный в добыче нефти со дна моря, оказался полезным при разработках такого вполне твердого ископаемого, как сера, залежи которой также имеются в толще грунта на морском дне. Для извлечения серы бурят скважину, подобную нефтяной, и под большим давлением вводят в пласт перегретую смесь воды и пара. Под влиянием высокой температуры сера плавится, и тогда ее откачивают с помощью специальных насосов.

К минеральным ресурсам океана, несомненно, относится и его вода, содержащая много веществ, находящих промышленное применение. Правда, для получения этого сырья совсем не нужно погружаться на дно — состав морской воды повсюду одинаков, ее можно черпать для переработки прямо с берега. Об извлечении из морской воды ценных материалов уже было сказано выше, необходимо лишь дать общую оценку этим ресурсам.

Американские экономисты подсчитали, что стоимость всех веществ, растворенных в одном кубическом километре морской воды, по расценкам второй половины ХХ века приблизительно равна миллиарду долларов. Из этого объема можно получить 30 миллионов тонн поваренной соли, 4,5 миллиона тонн металлического магния и т.д. Может быть, ужаснувшись огромному количеству материалов, экономисты не пошли дальше и не попытались определить, сколько же стоит весь Мировой океан.

Добыча твердых полезных ископаемых Мирового океана во многом зависит от развития и становления морской геологии и морского горного дела.

До настоящего времени она была сосредоточена в зоне шельфа при глубине до 200 м, т. е. тяготела к суше и практически развивалась теми же путями, что и на континентальных разработках.

Шельфовые месторождения были выявлены как часть месторождений суши, как их естественное продолжение в море (например, платина - в США, касситерит - в Индонезии). В ряде случаев геологическая ситуация на суше благоприятствовала выявлению месторождений в прилегающей шельфовой зоне (алмазы - в Намибии, железистые пески - в Японии). Известными выходами пластов ископаемого на берегу, которые удалось проследить под дном моря, отличаются некоторые месторождения в Канаде, Японии, Англии и др.

Из коренных месторождений морского дна извлекают уголь, железные руды, олово, серу. Шахты и рудники под дном моря имеют разветвленную сеть горных выработок. В Японии из таких шахт добывают более 30% угля, в Англии-10%. Одним из крупнейших высокопроизводительных железорудных предприятий мира является канадский рудник «Вабана», вскрытый наклонными выработками с о-ва Белл-Айленд.

В пляжевой и прибрежно-морской зонах сейчас уже разрабатывают россыпные месторождения олова, золота, платины, редкоземельных элементов, железистых песков. Так, в капиталистических странах из подводных россыпных месторождений получают около 100% (от общего объема добычи) циркония и рутила, около 80% ильменита, более 50% касситерита. Добыча в прибрежной зоне строительных материалов (лесок, гравий, ракушечник) средствами современной техники позволяет получать высококачественное сырье по приемлемой себестоимости.

Зона шельфов - относительно доступная в техническом отношении - занимает одну пятую часть площади континентов. В структурном плане она является продолжением континентальных платформ под уровнем моря. Вероятность обнаружения месторождений твердых полезных ископаемых в осадочных и коренных породах дна шельфа такая же, как и в континентальных условиях. Это немаловажное обстоятельство: в нашей стране шельфы занимают территорию около 6 млн. км 8 (21,8% всей площади шельфовых вон в Мировом океане).

В последнее время за рубежом придают особое значение освоению глубоководных рудных залежей, обнаруженных в центральных районах океанов и в некоторых разломах земной коры на дне морей и океанов. Месторождения, пригодные для разработки, содержат в среднем до 2% никеля, кобальта и меди, около 20% марганца, а также ряд других ценных элементов. Средняя плотность залегания конкреций на перспективных участках доходит до 10 кг на 1 м 3 площади дна. По ориентировочным подсчетам рентабельная добыча может быть обеспечена предприятием, ежегодно производящим 3 млн. т сухих конкреций.

Выявление и освоение месторождений твердых полезных ископаемых, особенно в открытых частях Мирового океана, сталкивается с отсутствием опыта ведения морских горных работ. Недостаточная эффективность морских горных разработок, осуществляемых средствами традиционной техники, применяемой в континентальных условиях, является главным препятствием на пути развертывания морского горного производства. Анализ мирового опыта морских горных работ, современных технических средств и технологий, тенденций их совершенствования является задачей актуальной.

Твердые полезные ископаемые, извлекаемые из моря, пока что играют значительно меньшую роль в морском хозяйстве, чем нефть и газ. Однако и здесь наблюдается тенденция к быстрому развитию добычи, стимулируемая истощением аналогичных запасов на суше и их неравномерным размещениям. Кроме того, стремительное развитие техники обусловило создание усовершенствованных технических средств, способных вести разработки в прибрежных зонах.

Залежи твердых полезных ископаемых в море и океане можно подразделить на коренные, встречающиеся на месте своего первоначального залегания, и рассыпные, концентрации которых образуются в результате выноса обломочного материала реками вблизи береговой линии на суше и мелководье.

Наибольшее значение после нефти и газа в настоящее время имеют россыпные месторождения металлоносных минералов, алмазов, строительных материалов и янтаря.

По отдельным видам сырья морские россыпи имеют преобладающее значение. В них содержаться десятки различных, в том числе тяжелых минералов и металлов, которые пользуются спросом на мировом зарубежном рынке. К наиболее существенным из них относятся ильменит, рутил, циркон, монацит, магнетит, касситерит, тантал-ниобиты, золото, платина, алмазы и некоторые другие. Крупнейшие прибрежно-морские россыпи известны в основном в тропической и субтропической зонах Мирового океана. При этом россыпи касситерита, золота, платины и алмазов встречаются значительно редко, они представляют собой древнеаллювиальные месторождения, погруженные под уровень моря, и находятся поблизости от районов своего образования.

Такие минералы прибрежно-морских россыпных месторождений, как ильменит, рутил, циркон и монацит - наиболее широко распространенные, «классические» минералы морских россыпей. Эти минералы обладают большим удельным весом, устойчивы к выветриванию и образуют промышленные концентрации во многих районах побережий Мирового океана.

Железомарганцевые отложения в океанах

На протяжении предшествующих тысячелетий единственным источником минеральных ресурсов был континентальный блок, а в последней четверти ХХ в. началось освоение дна Мирового океана. В связи с этим уместно рассмотреть, каковы перспективы будущего освоения рудных ресурсов океана. Различным аспектам проблемы посвящено множество публикаций. Мы коснемся лишь самых характерных сторон состава и формирования океанских рудоносных отложений.

Начальные сведения о рудных образованиях на дне открытого океана были получены в ходе проведения первой в истории мировой науки комплексной океанологической экспедиции на английском судне “Челленджер”, продолжавшейся почти четыре года (1872-1876).

18 февраля 1873 г. при проведении драгировки в 160 милях к юго-западу от Канарских о-вов со дна были подняты черные округлые желваки - железомарганцевые конкреции, содержащие, как показали уже первые анализы, значительное количество никеля, меди и кобальта. Правда, несколько ранее, в 1868 г., во время экспедиции Н. Норденшельда на шведском судне “София”, похожие конкреции были подняты со дна Карского моря, но эта находка осталась практически незамеченной.

В течение нескольких десятилетий после экспедиции “Челленджера” конкреции находили регулярно почти все последующие экспедиции, получавшие донные пробы, и начиная с 60-х годов ХХ в. стали появляться обоснованные предположения о глобальном характере железомарганцевого оруденения на дне океана. Так, по расчетам Д. Меро, общие ресурсы железомарганцевых конкреций на дне Тихого океана достигают 1.66х10 12 т.

Железомарганцевые конкреции, широко распространенные на дне Мирового океана, максимально сосредоточены в нескольких рудных полях, в пределах которых они распределяются неравномерно, хотя на некоторых участках конкреции покрывают свыше 50% площади дна. В их минеральном составе доминируют гидроксиды марганца (тодорокит, бернессит, бузерит, асболан) и железа (вернадит, гематит, фероксигит), с ними связаны все представляющие экономический интерес металлы.

Распространение железомарганцевых конкреций, обогащенных рудными металлами.

Химический состав океанских конкреций крайне разнообразен: в тех или иных количествах присутствуют практически все элементы периодической системы. Для сравнения в таблице 1 приводятся средние содержания главных рудных элементов в морских железомарганцевых конкрециях и в глубоководных пелагических осадках.

Соотношение средних содержаний химических элементов в железомарганцевых конкрециях (ЖМК) и глубоководных осадках океана.

Проблема генезиса железомарганцевых конкреций сопряжена с проблемой скорости их роста. Согласно результатам датирования конкреций традиционными радиометрическими методами, скорость их роста оценивается миллиметрами за миллион лет, т.е. намного ниже скоростей отложения осадков. По другим данным, в частности по возрасту органических остатков и по изотопному составу гелия, конкреции растут в сотни и тысячи раз быстрее и могут, как предполагают, оказаться моложе подстилающих осадков.

В первом случае предлагался ряд объяснений, например: активность переворачивающих конкреции донных организмов, воздействие придонных течений, поддерживающих конкреции “на плаву”, тектонические толчки, встряхивающие донные отложения. Для обоснования второй концепции наиболее удобна гипотеза усиленной поставки в позднечетвертичный океан гидротермального марганца, однако конкретные доказательства подобного явления пока не приводились. В любом случае конкреции сформировались за счет поступления рудного материала из подстилающих осадков, о чем свидетельствует корреляция средних содержаний в них различных элементов.

До сих пор мы фактически не знаем откуда берутся металлы, связанные в железо-марганцевых отложениях (ЖМО), каков механизм формирования конкреций, скорости их роста и др. И хотя исследований на эти темы опубликовано много, возможно тысячи, включая капитальные монографии, однако по-прежнему сохраняется дискуссионность и неопределенность во многих вопросах. Может случиться, что добыча конкреций и рудных корок (с подводных поднятий) начнется раньше, чем будут выяснены кардинальные вопросы их происхождения и роли в океанской среде. Ведь известно, что обогащенность ЖМО ценными металлами связана с их высокой сорбционной активностью, а это значит, что роль их в поддержании равновесия в составе морской воды огромна, и особенно, в условиях резкого увеличения антропогенных и техногенных сбросов в океаны.

Кобальтоносные железомарганцевые корки

Кобальтоносные железомарганцевые корки представляют собой образования, родственные конкрециям: они близки им по минеральному и химическому составу, текстурно-структурным особенностям и генезису. Наряду с этим коркам свойственны существенные специфические черты, позволяющие выделить их в самостоятельную формацию.

Химический состав железомарганцевых конкреций Мирового океана (М. Мельников, 2002).

Почти повсюду корки, как и конкреции характеризуются слоистым строением.

Наиболее полные разрезы корок известны в пределах Магеллановых гор, поднятий Маршалловых островов, Маркус-Уэйк и Уэйк-Неккер. Возраст этих структур раннемеловой или позднеюрско-раннемеловой, то есть 100-150 млн лет (М. Мельников, 2002).

Как видно, формирование корок началось намного раньше, чем охарактеризованных выше ЖМК абиссальных котловин. По возрасту конкреции могут быть сопоставлены со слоями III - верхней частью слоя II корок. Возможно, нижним слоям корок соответствуют слои более древних конкреций, которые иногда встречаются в разрезах осадочных пород. Погребенные конкреции, как правило, погребены в буквальном смысле слова - засыпаны под обвалами или оползнями. При этом фаунистическая их характеристика свидетельствует, в частности, и о плиоценовом возрасте.

В разрезе корок наиболее резко выделяется базальный реликтовый слой. Он отличается особенно высоким содержанием фосфора, кальция, серы, кремнезема, присутствием барита. В его строении нередко наблюдается чередование полос параллельно-слоистой и дендритовой текстур.

Изучение состава субмикроскопических слойков с использованием микро-анализаторов показало, что реликтовый слой имеет сложное строение: в одних участках развиты микро слойки однородного состава, в других наблюдается чередование контрастных по составу микро слойков, соответствующих <кристаллической> и <аморфной> фазам конкреций. Характерно, что в реликтовом слое наблюдаются многочисленные границы несогласий, разделяющих различные генерации, что свидетельствует о нестабильной обстановке формирования этого слоя.

По химическому составу указанные слои корок существенно отличаются от конкреций, с которыми они близки по возрасту. В корках понижена концентрация марганца, но повышено содержание железа. Марганцевый модуль (Mn/Fe) корок составляет 1-2,5, тогда как в конкрециях Тихого океана 3-6. Три внешних слоя корок характеризуются достаточно однородным составом субмикроскопических слойков. В отличие от конкреций в них редко наблюдаются участки, где чередуются микро слойки, контрастные по составу. Эта особенность строения корок позволяет предположить, что основная их масса относится к гидрогенным образованиям.

Исключением является реликтовый слой; он формировался, вероятнее всего в участках с относительно спокойной гидродинамической обстановкой. Существенным источником рудных компонентов при его образовании мог служить, по-видимому, гальмиролиз. Согласно возрастной характеристике слоев, этот процесс на подводных горах в Тихом океане имел место с позднего мела до раннего эоцена. Затем, по-видимому, этот источник исчерпал свой ресурс. Последующие слои корок нарастали гидрогенным путем, вследствие обогащения придонного слоя воды компонентами, поступающими из вулканических источников в периоды их активизации. Импульсы вулканической активности зафиксированы соответствующими слоями, характеризующимися индивидуальными геохимическими особенностями. Продолжительные периоды затухания вулканизма выражены перерывами в слоистости корок, явлениями размыва, накоплением обломочного, силикатного материала.

Как было отмечено, корки являются более древними образованиями, чем конкреции; они начали формироваться в позднемеловую эпоху, а может быть и раньше. Они связаны с иными вулканическими комплексами, чем конкреции. В частности, начало образования формации железомарганцевых корок совпадает с эпохой становления вулканогенных и плутонических комплексов коматиит-толеитового и габбро-норит-трактолитового составов. Возможно, обогащенность корок платиноидами обусловлена связью с указанными комплексами, которые характеризуются Ni-Cu-Cr и Ni-Pt-Cr специализацией. Как известно, содержание Pt в корках колеблется от 0,35 до 1,31 г/т, тогда как в конкрециях от 0,10 до 0,13 г/т (С. Андреев и др., 1999).

Надо отметить, что в районах развития корок, в межгорных депрессиях наблюдаются скопления железомарганцевых конкреций и корково-конкреционных образований, которые, также должны быть включены в единую формацию кобальтоносных железомарганцевых корок. Эти образования в данном случае можно рассматривать как продукты различных фаций единого рудогенетического процесса. По составу корки и сопровождающие их конкреции близки, они относятся к одному геохимическому типу, хотя уровень содержания Со в конкрециях несколько ниже, чем в корках. По содержанию Ni и Cu эти конкреции не уступают коркам. По химическому составу конкреции шлейфов гор занимают промежуточное положение между корками гор и конкрециями котловин.

Основные особенности состава, строения и размещения двух основных формаций оксидных руд океана, не имеющих аналогов на континенте, свидетельствуют о том, что на их формирование оказывают влияние разнообразные факторы. Важнейшую рудогенетическую роль играет морская вода, представляя собой одновременно и среду минералообразования, и агент транспортировки рудных компонентов; из морской воды в конечном итоге осаждается рудное вещество. Формирование корок и конкреций обусловлено и структурой водной толщи с ее геохимическими барьерами, и ее подвижностью; на размещение оксидных руд оказывает влияние субширотная климатическая зональность, они обнаруживают определенную зависимость от биологической активности.

В концентрации вещества оксидных руд участвуют процессы окисления, реакции автоколебательного характера, механизмы сорбции, коагуляции, соосаждения, возможно и биологические процессы.

Рудное вещество вероятнее всего происходит из разных источников - в первую очередь это вулканизм, диагенез, гальмиролиз и др. Из перечня источников нельзя исключить даже выщелачивание металлов из базальтов морского дна, хотя масштабы этого явления несравнимо меньше тех, что ему приписываются. Морская вода, интегрируя все источники, все факторы рудообразования в значительной степени маскирует влияние каждого из них. Генезис оксидных руд не может быть сведен к одному простому процессу, - они являются продуктом сложных взаимодействующих процессов, многообразных источников. Но при всем этом совершенно очевидно, что решающая роль в образовании рассмотренных формаций, сложенных элементами типичной базальтоидной ассоциации, принадлежит базальтоидному вулканизму. Именно этот источник обладает достаточно мощным ресурсом рудных компонентов и его периодически возобновляющаяся активность позволяет объяснить пульсирующий рост железомарганцевых образований. Оксидные руды обеих формаций состояний таким образом, в основном из эндогенного вещества, перенесенного и (при образовании формации ЖМК) предварительно накопленного в промежуточных коллекторах - активном слое рудоконтролирующих структур.

Массивные сульфидные руды океана

В течение нескольких десятилетий после экспедиции “Челленджера” конкреции находили регулярно почти все последующие экспедиции, получавшие донные пробы, и, начиная с 60-х годов ХХ в. стали появляться обоснованные предположения о глобальном характере железомарганцевого оруденения на дне океана. Так, по расчетам Д. Меро, общие ресурсы железомарганцевых конкреций на дне Тихого океана достигают 1.66х10 12 т.

Другой тип подобных образований - железомарганцевые корки, которые, в отличие от конкреций, образуют протяженные относительно тонкие покровы на твердых породах различного состава, преимущественно на подводных поднятиях. Они были открыты и впервые описаны совместно с конкрециями в результате той же экспедиции на “Челленджере” и лишь много позднее выделены в самостоятельный морфологический тип.

В 1954 г. появилось первое сообщение о высоком содержании кобальта (0.7%) в железо-марганцевых корках Тихого океана, что стимулировало дальнейшие комплексные исследования. В настоящее время кобальтоносные, медленно растущие корки обычно называют гидрогенными, или рудными, в отличие от бедных кобальтом и быстро растущих гидротермальных.

Распространение железомарганцевых конкреций, обогащенных рудными металлами

Металлоносные осадки с аномально высоким содержанием железа были впервые обнаружены экспедицией “Челленджера”, а спустя 70 лет экспедицией “Карнеги” в юго-восточной части Тихого океана, но они также не привлекли к себе внимания. Ситуация изменилась, когда были опубликованы карты распределения железа и марганца в осадках Тихого океана, продемонстрировавшие региональное обогащение этими металлами обширной юго-восточной зоны. Такое обогащение связывалось с поставкой гидротермального вещества. О возможном наличии в океане подобного процесса сообщал и К.К. Зеленов, воочию наблюдавший осаждение гидроксидов железа и алюминия из гидротерм на подводном склоне вулкана Бану-Вуху в Индонезии.

Столь же повышенный интерес вызвали к себе металлоносные осадки Красного моря. В 1964 г. в его центральной впадине, названной впоследствии именем исследовательского судна “Атлантис II”, на глубине 2190 м обнаружили горячие рассолы с температурой 44°С и соленостью 261‰. (Заметим, что температурная аномалия была здесь впервые выявлена на глубине 600 м контр-адмиралом С.О. Макаровым во время плавания на корвете “Витязь”, в 1886 г., и впоследствии многократно подтверждалась другими экспедициями, но ее объясняли погружением нагретых и осолоненных поверхностных вод.) Затем установили, что придонный рассол обогащен растворенными металлами, а донные осадки состоят из чередующихся полужидких слоев оксидов и сульфидов металлов, превращающихся при высыхании в рудное вещество с примесью соли. Поэтому осадки впадины Атлантис II нередко называют рудными илами. После таких сенсационных находок в Красном море работало несколько экспедиций и было установлено 14 впадин с осадками, обогащенными металлами гидротермального происхождения .

Наличие сульфидных прослоев в металлоносных осадках Красного моря показало, что сульфидоносные гидротермы могут разгружаться также и в рифтовых зонах открытого океана. Действительно, в 1967 г. в зоне тройного сочленения Аравийско-Индийского и Центрально-Индийского подводных хребтов, в гидротермально измененных основных породах, обнаружили сульфидную минерализацию штокверкового типа, представленную пиритом, халькопиритом, ковеллином, ильменитом, гематитом. Судя по характеру двойников халькопирита, температура рудоносного флюида была около 550°С. Но большинство исследователей считало, что накопление сульфидов на поверхности дна в рифтовых зонах открытого океана невозможно из-за насыщенности морской воды кислородом, который приводит к быстрому окислению сульфидов.

Железомарганцевые конкреции, широко распространенные на дне Мирового океана, максимально сосредоточены в нескольких рудных полях, в пределах которых они распределяются неравномерно, хотя на некоторых участках конкреции покрывают свыше 50% площади дна. В их минеральном составе доминируют гидроксиды марганца (тодорокит, бернессит, бузерит, асболан) и железа (вернадит, гематит, фероксигит), с ними связаны все представляющие экономический интерес металлы. Химический состав океанских конкреций крайне разнообразен: в тех или иных количествах присутствуют практически все элементы периодической системы. Для сравнения в таблице 1 приводятся средние содержания главных рудных элементов в морских железомарганцевых конкрециях и в глубоководных пелагических осадках.

По другим данным, в частности по возрасту органических остатков и по изотопному составу гелия, конкреции растут в сотни и тысячи раз быстрее и могут, как предполагают, оказаться моложе подстилающих осадков. Для подтверждения первой точки зрения требуется объяснить, почему конкреции не перекрываются относительно быстро накапливающимися осадками, для подтверждения второй - откуда за относительно короткое время поступила колоссальная масса марганца, необходимая для формирования конкреций в масштабах всего океана.

В первом случае предлагался ряд объяснений, например: активность переворачивающих конкреции донных организмов, воздействие придонных течений, поддерживающих конкреции “на плаву”, тектонические толчки, встряхивающие донные отложения. Для обоснования второй концепции наиболее удобна гипотеза усиленной поставки в позднечетвертичный океан гидротермального марганца, однако конкретные доказательства подобного явления пока не приводились. В любом случае конкреции сформировались за счет поступления рудного материала из подстилающих осадков, о чем свидетельствует корреляция средних содержаний в них различных элементов. Железомарганцевые гидрогенные (или рудные) корки характеризуются низкими скоростями накопления, относительно стабильным составом и повышенным содержанием цветных металлов, что сближает их с глубоководными железомарганцевыми конкрециями. Рудные корки, распространенные на подводных поднятиях, встречаются во всех климатических зонах в прибрежных, гемипелагических и пелагических обстановках на глубинах от нескольких десятков до нескольких тысяч метров. В наибольшей степени они распространены в Тихом океане - на подводных горах Мид Пацифик и Магеллановых, в северной части экваториальной зоны, на склонах Гавайского хребта, на подводных горах в районе Маршалловых островов и архипелага Туамоту и в других районах.

Обычно корки залегают на поверхности плотных пород - базальтов, гравелитов, известняков, мергелей, иногда фосфоритов. В большинстве регионов их мощность связана с глубиной океана. Так, на подводных горах Мид Пацифик корки мощностью свыше 6 см находятся на глубинах 1500-2100 м; выше и ниже этого интервала их мощность сокращается до 0.5-3.5 см.

Генезис корок связан, очевидно, с теми же механизмами, которые предлагались для железомарганцевых конкреций, но с превалированием гидрогенных процессов, т.е. осаждением металлов непосредственно из океанской воды. Об этом свидетельствует и определенная зависимость между средними содержаниями элементов в корках и воде. Наибольшую роль в процессе формирования таких образований играют, по мнению большинства исследователей, окислительные и сорбционные процессы. Но для платины предполагался также механизм ее восстановления двухвалентным марганцем, что подтверждается находкой самородной платины в железомарганцевых конкрециях Тихого океана.

Гидротермальные рудопроявления (из которых наибольшим разнообразием пользуются металлоносные осадки) известны в Тихом, Атлантическом океанах и в меньшей степени - в Индийском.

Металлоносные осадки отличаются повышенным содержанием железа гидротермального происхождения (более 10%). Обширная зона их распространения - юго-восточная часть Тихого океана (около четверти всей площади) между 5° и 45°ю.ш., куда поступает гидротермальный материал из рифтовой зоны Восточно-Тихоокеанского поднятия. На значительной части этой площади содержание железа в осадках (в пересчете на бескарбонатное вещество) превышает 20%.

Путем геохимических сопоставлений было показано, что основная часть (62-88%) Fe, Mn, Pb, Zn поступила в эти осадки из гидротермальных источников, в то время как основная часть (54-94%) Ba, Ni, Co, Zr, La, Sm, Eu - из океанской воды. Доля гидротермального источника в поставке Si, V, B оценена в 28-37%, Ni, Co, Zr - в 11-18%.

Массивные сульфиды представляют собой плотные образования сложного строения и переменного состава. Они известны в ряде участков Восточно-Тихоокеанского поднятия, в Калифорнийском заливе, в зонах задугового спрединга, западной части Тихого океана, в северной части.

Во впадине Гуаймас (Калифорнийский залив) встречаются конусообразные гидротермальные постройки высотой до 50 м; другие постройки, находящиеся на внутритроговых полях, имеют форму колонн и пагод, возвышающихся над коническими цоколями на 17-23 м. На поверхности цоколей наблюдаются скопления вестиментифер (специфической фауны гидротермали) и бактериальные маты.

Минеральный состав массивных сульфидов варьирует в пределах каждого рудопроявления в зависимости от состава и температуры гидротермального раствора, скорости его истечения и условий осаждения рудного материала. Для большинства рудопроявлений характерны различные сочетания сульфидов железа, меди, цинка и свинца (табл.3). Химический состав сульфидов также варьирует в зависимости от того, рассматриваются ли мономинеральные компоненты, минеральные агрегаты, поликомпонентные штуфы или морфологически обособленные части рудных построек.

Гидротермальные железомарганцевые корки встречаются как совместно с металлоносными осадками, так и без них, нарастая на твердых породах или на поверхности неконсолидированных осадков, главным образом на возвышенностях океанского дна. По морфологии они аналогичны гидрогенным (рудным) коркам, но отличаются минеральным составом.

Химический состав гидротермальных корок характеризуется резким преобладанием марганца или железа: отношение Fe/Mn колеблется от 24 000 (при максимальном содержании Fe = 58%) до 0.001 (при максимальном содержании Mn = 52%).

Генезис фосфоритов на современных подводных окраинах континентов связан с явлением прибрежного апвеллинга, обеспечивающим высокую биологическую продуктивность фитопланктона, накопление обогащенных подвижным фосфором биогенных осадков и формирование в них диагенетических фосфатных стяжений. При последующем переотложении таких осадков фосфатный материал может подвергаться вторичной концентрации, о чем, например, свидетельствует сходство строения и состава современных фосфатных зерен, рассеянных в диатомовых илах внутреннего шельфа и сконцентрированных в переотложенных плиоценовых-плейстоценовых осадках внешнего шельфа Намибии.

Генезис фосфоритов на подводных горах и возвышенностях объясняется аналогичным образом для мелководных этапов геологической истории поднятий, когда они омывались поверхностными водами. Вопрос о том, происходила ли фосфатизация пород при глубоководной стадии развития подводных гор, остается спорным и требует дополнительного исследования.

Идея освоения рудных ресурсов океана возникла на базе значительных достижений в области исследований океанского дна, проводившихся ведущими мировыми державами в эпоху холодной войны и активной конкуренции за приоритет в освоении океана как стратегического пространства. Естественно, что эта идея получила поддержку руководства каждой из конкурирующих сторон, поскольку руды марганца и кобальта рассматривались как стратегическое сырье. В океане были проведены сотни специализированных рейсов научно-исследовательских судов США, СССР, а также Индии, Японии, европейских стран, Австралии, Новой Зеландии и ЮАР. Было получено и обработано огромное количество новой информации о рудном потенциале океана, на что было истрачено, по ориентировочной оценке, около 4 млрд. долл.

Экологические проблемы, связанные с нарушением среды как на дне, так и в фотическом горизонте водной толщи, предполагалось разрешить путем минимизации взмучивания придонного слоя, а также выводом продуктов промывки конкреций с борта судна на глубину нескольких сот метров по специальному трубопроводу. Наконец, наиболее критическая проблема, ставшая первостепенной, - рентабельность предприятия в целом. Еще в конце 70-х годов было подсчитано, что капитальные затраты на создание производственного комплекса по добыче и переработке 3 млн т конкреций в год составят 1.5-2 млрд долл. При этом доходы на вложенный капитал - 8.5-9.5%, а чистая прибыль после вычета налогов - лишь 3-4.5%. С учетом нестабильности океанской среды, изменчивости ситуации на рынках сбыта, а главное, при отсутствии стратегического стимула, такой экономический риск не оправдан. Но работавшие в этой области специалисты считают, что накопленный опыт по освоению подводных месторождений необходимо тщательно сохранять и приумножать, дабы немедленно его реализовать в случае изменения экономической ситуации в мировой экономике и технологиях, могущих вызвать повышение цен на черные и цветные металлы. Ресурсы массивных сульфидов исследованы недостаточно, но в перспективе могут оказаться весьма значительными: протяженность зон спрединга океана, к которым они приурочены, достигает 60 тыс. км, а расстояние между расположенными вдоль них гидротермальными полями может быть относительно коротким - десятки и сотни километров. В Галапагосском поле заключено около 25 млн т массивных сульфидов, а общие ресурсы меди и цинка в сульфидных рудах океана оценивались в 1987 г. от 216 до 518 млн т, или соответственно 14 и 29% от мировых запасов. Массивные сульфиды образуют, в противоположность железомарганцевым конкрециям, концентрированные рудные тела, залегают на значительно меньшей глубине (около 2.5 км) и находятся в большинстве случаев ближе к континенту, что упростит проблему их будущей разработки.

Фосфориты

Фосфориты рассматриваются как раннедиагенетические образования, формирующиеся за счет фосфора поровых, отчасти над донных вод, который в свою очередь является результатом деструкции мягких тканей организмов. Слои, перекрывающие реликтовый слой, часто почти не обнаруживают заметных признаков фосфатизации.

Фосфатные слойки, чередующиеся с оксидными, не обладают никакими признаками метасоматического замещения. Эти слойки ничего общего не имеют и с нередко наблюдаемыми секущими прожилками фосфатного материала, которые представляют собой трещины, заполненные илом.

Природа фосфатного материала в корках остается не совсем ясной. Можно предположить, что фосфор концентрировался в основном в начальную стадию формирования коркового слоя, возможно, в результате апвеллинга, механизм которого активно функционировал вследствие того, что подводные горы на этом раннем этапе были приподняты. После повышения уровня океана, может быть вследствие второго (45 млн лет) или третьего (10 млн лет) скачка водной толщи, или вследствие перемещения подводных гор на большие глубины (Ю. Богданов и др., 1998), произошло резкое уменьшение отложения фосфора. Возможно, это событие и является тем рубежом, который отделяет время и условия образования реликтового слоя от последующих этапов.

Ресурсы фосфоритов, потребность в которых по мере расширения сельскохозяйственного производства неуклонно растет, оцениваются примерно в 20-25 млрд. т Р2О 5 на подводных окраинах континентов и свыше 1 млрд. т на подводных горах. При этом многие страны и регионы, имеющие выход в океан, не обеспечены наземными ресурсами фосфоритов, что стимулирует исследование возможностей их освоения. Также они пригодны и для производства простого и двойного суперфосфата, аммофоса, фосфорной кислоты, кормовых фосфатов. Препятствия на пути освоения океанских фосфоритов носят, видимо, временный характер. Месторождение желваковых фосфоритов на подводном поднятии Чатам (к востоку от Новой Зеландии) признано перспективным, но проект его разработки для производства удобрений вызвал протесты новозеландских экологов в связи с высоким содержанием уранов.



В настоящее время на земном шаре ежегодно добываются миллиарды тонн полезных ископаемых. При существующем объеме добычи полезных ископаемых из недр Земли, приуроченных к суше, может хватить, по определению ряда специалистов, лишь на первые сотни лет, а по некоторым ископаемым - лишь на первые десятки лет. Истощение запасов обуславливает вовлечение в разработку все более бедных по содержанию месторождений полезных ископаемых со сложными горно-геологическими и гидрологическими условиями, освоением месторождений в отдаленных и необжитых районах с неблагоприятными климатическими и метеорологическими условиями.

В то же время 2/3 территории земной поверхности покрыто морями и океанами, на дне и в водах которых сосредоточено большое количество запасов минерального сырья. Мировой океан является большим потенциальным источником для получения полезных ископаемых как за счет непосредственного их извлечения из морской воды, так и главным образом за счет добычи полезных ископаемых на громадных территориях, покрытых морями и океанами.

Еще задолго до нашей эры на побережьях морей и океанов добывалась пищевая соль, многие века славился янтарь с пляжей Прибалтики, более 100 лет производят добычу нефти и газа со дна морей и океанов. Однако лишь в последние десятилетия в связи с общим развитием науки и техники стали выявляться серьезные перспективы добычи твердых полезных ископаемых поводным способом. Интерес к полезным ископаемым морей и океанов в наши дни не случаен:
многие месторождения суши истощаются;
быстрый рост населения земного шара, а вместе с ним и потребностей в производстве средств производства и предметов потребления заставляет искать новые источники минерального сырья;
гигантский скачок в развитии науки и техники в последние годы дает возможность добраться до недоступных прежде богатств морей и океанов и разрабатывать их;
добыча некоторых видов полезных ископаемых, залегающих на морском дне, экономически выгоднее, чем на суше.
Экономическая целесообразность подводной добычи полезных ископаемых обеспечивается радом преимуществ:
отпадает необходимость отчуждения земель и последующей их рекультивации;
при разработке подводных месторождений не нужны подъездные пути;
многие из таких месторождений не нуждаются в оборудовании отвалов и различного рода хранилищ;
значительно уменьшаются затраты по вскрытию месторождения;
не нужно производить больших трудоемких и дорогостоящих взрывных работ, тратить средства на приобретение взрывчатых веществ, сложного оборудования и т.д.

Подводная добыча - разработка полезных ископаемых дна рек, озер, морей и океанов. Подводная добыча - извлечение полезных ископаемых из подводного забоя на поверхность комплексом механизмов и оборудования, работающего в водной среде, с целью получения, переработки и использования основных и сопутствующих компонентов месторождения. Подводная добыча осуществляется открытым (драги и земснаряды) и подземным (горные выработки под дном и буровые скважины) способами. Условно к подводной добыче относят извлечение полезных компонентов из морской воды (физико-химическое выделение солей и химических элементов).

При подводной добыче открытым способом выделяют следующие производственные процессы: 1) отделение добываемого сырья от массива месторождения; 2) доставка от заборного механизма до плавающего или стационарного средства (судна, баржи, понтона, платформы); 3) первичная обработка сырья (грохочение, сепарирование, промывание и т. д.); 4) хранение и транспортировка для последующей переработки. Первый этап осуществляется механическим, гидравлическим, пневматическим способами или их сочетанием. При механическом способе применяют бульдозерные лопаты, шнеки, грейферы, ковши и т. п., при гидравлическом и пневматическом - гидромониторы, эрозионные насадки, сифоны, насосы. Работы второго этапа ведут с помощью грейферов, ковшовых цепей, шнековых и ленточных конвейеров, напорных насосов, эрлифтов, эжекторов. Третий этап связан с работой грохотов, гидроциклонов, сепараторов. На четвертом этапе необходимы хранилища, а также средства транспорта (суда, баржи, трубопроводы). В зависимости от горно-геологических и гидрометеорологических условий, глубины разработки и вида полезного ископаемого применяются различные технические средства, а также способы подводной добычи. Преобладающим фактором является глубина моря. Различают добычу: мелководную при глубине воды не более 5 - 10 м; в пределах шельфа с глубиной до 100 - 200 м; свыше 200 м до предельных глубин океана (моря). В двух первых зонах добывают: строительные материалы, драгоценные камни и металлы, полиметаллические и железосодержащие пески, сырье для химической промышленности, энергетическое сырье. Третья зона перспективна для добычи конкреций, нефти и газа.

Разрабатываются россыпи преимущественно многочерпаковыми, гидравлическими и грейферными драгами. Для разработки железомарганцевых конкреций испытаны и строятся (1974) драги с гидравлическим подъёмом (эрлифт) и ковшами, закрепляемыми на бесконечном тросе (рис. 16.4.).
В Ленинградской области началась добыча марганца со дна Финского залива. ООО «Промтрак», ведущее разработку, планирует обеспечить 5-7% потребности России в марганце, импортируемом сейчас из стран СНГ и дальнего зарубежья. Завод построен в промышленной зоне города Кингисеппа. Сейчас ведется опытно-промышленная эксплуатация.

В России крупных месторождений марганца нет, до 90% этого металла закупается за рубежом. Ближайшие месторождения - в Грузии, Казахстане и Украине. Но огромные запасы марганца находятся на дне морей и океанов (больше всего его в Тихом и Индийском океанах).
Большой интерес представляют источники богатые различными элементами - горячие подводные гейзеры, или «чёрные курильщики» (рис.16.5.).

В них морская вода сначала просачивается по трещинам на большую глубину, там нагревается до нескольких сотен градусов, обогащается минералами и вырывается наверх, вынося густую взвесь, богатую минералами, которая разносится течением и оседает в окрестностях. Так возникают километровые холмы, богатые металлами (рис 16.6.). Извлечение таких полезных ископаемых ведётся также как и добыча россыпей (рис. 16.4.).

При подводной добыче подземным способом производственные процессы аналогичные с процессами подземной добычи полезных ископаемых, приуроченных к суше. На большинстве подводных рудников стволы закладываются на суше, вследствие этого откаточные выработки имеют протяжённость до 10 км. Применяют вскрытие шахтных полей стволами с искусственных островов (например, рудник «Майке», Япония). Глубина заложения горных выработок под дном, гарантирующая их от затопления, зависит от свойств вышележащих пород и обычно равна 65 - 80 м. Разработка месторождений ведётся с закладкой выработанного пространства. Таким способом производят добычу каменного угля в Японии, Канаде, Англии, Шотландии, Турции, Китае и на острове Тайвань.

Чаще всего морские месторождения представляют собой продолжение, скрытых в недрах суши.
Хорошо развита добыча из подводных шахт железной руды, которая ведется в Японии на острове Кюсю, в Австралии, в Канаде в Гудзоновом заливе и на острове Ньюфаундленд (здесь для извлечения руды сооружен искусственный остров), а также в Финляндии, у входа в Финский залив.

Значительно реже встречаются подводные рудники, где разрабатываются руды меди и никеля, олова и ртути. В Канаде, в Гудзоновом заливе, близ г. Черчилл, добывается медь и никель, в Великобритании, на полуострове Корнуолл, - медь, никель, и олово.

В Турции под дном Эгейского моря разрабатываются месторождения ртутных руд.
К подводной добыче относят также извлечение полезных ископаемых из морской воды, основанное на физико-химических процессах выделения растворённых в ней солей, различных химических элементов, общий объём которых достигает 48 млн. км3 (в т. ч. около 2x1016 т натрия, около 2x1015 т магния, около 1,3x1014 т брома).

С середины 19 в. из маточных рассолов поваренной соли во Франции начали получать бром. С 30-х гг. 20 в. начато промышленное извлечение из морской воды магния. В 1970 в СССР, США, Великобритании и др. странах работало свыше 100 предприятий по добыче хлористого натрия из морской воды с объёмом производства свыше 10 млн. т, магния 300 тыс. т и брома 75 тыс. т.

Технология извлечения химических элементов из морской воды предусматривает, как правило, их концентрацию, а затем, при взаимодействии насыщенного раствора с др. элементами, их получение в виде соединений (рис. 16.7.)

Запрещается любое копирование и распространение информации без письменного согласия авторов учебника "Основы горного дела"

ЭКСКЛЮЗИВНЫМ ПРАВО НА ПУБЛИКАЦИЮ ОБЛАДАЕТ "ГОРНОПРОМЫШЛЕННЫЙ ПОРТАЛ РОССИИ"

Минеральные богатства океана люди начали использовать давно, но только в последнее время стало возможным оценить их запасы.

Сама морская вода является ценной «полиминеральной рудой». 1 кг морской воды содержит в среднем 35 г солей.

В Мировом океане сосредоточено около 5·10 16 т минерального сырья. Насколько велика эта масса, можно оценить из такого сравнения. Если извлечь всю соль из океана и равномерно распределить по поверхности земной суши, то на каждый квадратный метр придется по 330 т соли, а толщина слоя составит около 150 м.

Больше всего в океане хлора - 2,64·10 16 т, натрия - 1,4·10 16 т, магния - 1,8·10 15 т, кальция - 5,6·10 14 т, калия - 5,3·10 14 .

По приближенным подсчетам, в воде Мирового океана содержится 20 млрд. т урана, 15 млрд. т меди, 0,5 млрд. т серебра, 8-10 млн. т золота.

Однако и опресненная вода потенциально является одним из наиболее важных соединений, которое может быть получено из морской воды. От употребления воды низкого качества в мире ежегодно заболевают 500 млн. человек. В настоящее время в промышленно развитых странах мира начал ощущаться недостаток пресной воды.

Все эти обстоятельства заставляют искать способы опреснения морской воды. В Мировом океане заключена огромная масса воды.

Объем гидросферы:

  • Океаны - 1380 км 2
  • Озера и реки - 0,5 км 2
  • Лед - 22 км 2
  • Вода в атмосфере - 0,013 км 2
  • Вода в морских и континентальных осадках - 196 км 2

Высокая стоимость получения пресной воды является основным недостатком всех методов опреснения. С экономической точки зрения выгодно создавать опреснительные установки совместно с атомными электростанциями или другими дешевыми источниками энергии.

В Советском Союзе опреснительная атомная электростанция построена в городе Шевченко на Каспийском море. Мощность станции по опреснению воды равна 120 000 м 3 в сутки.

Интересна идея получения пресной воды из айсбергов. Подсчитано, что если буксировать айсберг объемом 250 млн. м 3 из района Антарктиды в Чили (пустыня Атакама) и он за время пути потеряет 86% своей массы, то полученная прибыль составит 1,4 млн. долларов (стоимость оставшейся воды 2,7 млн. долларов минус 1,3 млн. долларов - расходы на транспортировку).

В настоящее время из всех известных химических элементов, находящихся в морской воде, добывают натрий и хлор (в виде поваренной соли), бром, магний, калий.

Запатентованы способы извлечения урана, золота, серебра и ряда других элементов из морской воды в отдельности или в виде полиметаллического концентрата.

Добыча поваренной соли из морской воды была известна еще с времен античной Греции и Рима. Соль была дорогим продуктом, и во многих странах существовала монополия государства. Еще в XVIII в. в Италии по морскому побережью расставлялась охрана, которая следила за тем, чтобы жители «не крали» морскую воду.

Извлечение соли из морской воды возможно путем естественного испарения или вымораживания. Основной способ - испарение морской воды, протекающий в две стадии. Мелководные заливы разгораживают на ряд бассейнов, в которых после испарения первым выпадает сульфат кальция. Затем полученный рассол перекачивают в другой бассейн, где после дополнительного испарения осаждается хлористый натрий. Эффективность этого способа получения поваренной соли крайне низка: извлекается всего 4%.

Производство магния из морской воды хорошо освоено. Стоимость магния из морской воды значительно ниже, чем из минеральных залежей на суше. На заводах морская вода смешивается с реагентом (известковое молоко) и полученные соединения магния подвергают химической обработке соляной кислотой с последующим получением чистого магния в электролитических ваннах.

Соединения магния широко используются в различных областях промышленности: при производстве бумаги, текстиля, резины, как огнеупорный материал для облицовки плавильных печей.

Бром можно рассматривать как исключительно морской элемент: в океане растворено 99% мировых запасов брома. Процесс извлечения брома из морской воды несложен. Морскую воду подкисляют серной кислотой и затем продувают сильной струей воздуха. Бромо-воздушная смесь затем реагирует со стружками железа, образуя бромистое железо. Существуют и другие способы извлечения брома из морской воды с использованием хлора, сульфата, анилина.

Главные потребители брома: производство антидетонаторов для горючего, органическая синтетическая промышленность, медицина и фотография.

Полезные ископаемые . Полезные ископаемые океана можно классифицировать следующим образом:

I. Сырье в недрах под океаном (нефть, газ, уголь, сера, железная руда, барит).

II. Прибрежные россыпные месторождения (ильменит, монацит, циркон, магнетит, золото, алмазы, касситерит, вольфрамит, платина).

III. Полезные ископаемые морского дна (железомарганцевые конкреции и фосфориты).

По данным ООН, наибольший интерес представляет добыча нефти и газа на океанском шельфе (материковая отмель). Мировая добыча нефти составила в 1972 г. 2,6 и, по прогнозам, в 2000 г. может достигнуть 7,4 млрд. т. В 1975 г. на континентальный шельф приходилось уже 1/5 всей добываемой нефти, и предполагается, что в 2000 г. уже половина всей нефти будет добываться со дна океана.

Самые большие нефтяные месторождения - Персидский и Мексиканский заливы. Запасы нефти бассейна Северного моря оцениваются в 5 млрд. т и газа - 3,0-4,5 триллиона м 3 , и следует отметить особую ценность этого района для европейских стран.

Потребности мирового хозяйства в нефти и природном газе растут очень быстро, свидетельством тому явился так называемый «энергетический кризис».

Кроме нефти и газа, на шельфе имеются залежи угля и руд. Много лет ведется добыча угля шахтами, расположенными на суше в Англии, Японии, Канаде, Чили и других странах. Разведаны месторождения угля на шельфе Турции, Китая, Австралии, в Арктике, США. Считается, что экономически выгодна добыча угля до 25 км от берега. К 1980 г. станет оправдана добыча угля до 25 км от берега. Извлечение угля из недр морского дна составляет для Англии 10% годовой добычи, а для Японии - 30%.

Железная руда . Добыча железной руды из недр шельфа ведется с крупнейшего из известных в настоящее время месторождения Вабана, расположенного у восточного побережья о. Ньюфаундленд. Запасы месторождения Вабана оценены в 2 млрд, т, а производительность рудника - 3 млн. т в год. В меньшем объеме ведется добыча руды во Франции, Финляндии и Швеции.

Сера . При разведочных работах на нефть были обнаружены значительные залежи серы в Мексиканском заливе, вблизи побережья США. Запасы серы оцениваются в 40 млн. т. Для эксплуатации серного месторождения Гранд-Айл построена стальная эстакада, на которой нагревают морскую воду и под давлением закачивают в серный пласт, где она вызывает плавление серы. Расплавленную серу перекачивают на сушу по трубопроводу. В настоящее время на океан приходится 4% мирового производства серы.

Барит . На шельфе вблизи побережья Аляски эксплуатируется единственное месторождение барита, производственная мощность которого составляет 1000 т в сутки. Общие запасы составляют 2,5 млн. т.

Прибрежные россыпные месторождения тяжелых минералов образуются на границе океан - суша вследствие разрушения берегов, выноса обломочного материала реками, сортирующей и транспортирующей деятельности ветрового волнения и течений. Крупнейшие прибрежные россыпи находятся в основном в тропической и субтропической зонах. Они имеют большое экономическое значение, так как на них приходится значительная часть добычи и запасов редких металлов. Минералы ильменит и рутил содержат титан, циркон - цирконий, гафний, монацит - торий.

Наиболее известны морские россыпи Австралии, на долю которых приходится 90% производства рутилового концентрата в капиталистическом мире, 60% мировой добычи циркона и 25% монацита.

Богатейшие прибрежные россыпи имеются на побережье Бразилии. Их протяженность - 1600 км. Годовая добыча монацита составляет до 7000 т (в 1963 г. - 1/3 мировой добычи).

Крупные месторождения ильменита, рутила и циркона находятся на полуострове Флорида (США), на южном побережье Индии.

Олово . Кассетеритовые пески - одна из ценных руд, которая встречается в подводных россыпях. Основной район добычи олова - Юго-Восточная Азия, где находится 75% запасов олова всего капиталистического мира.

Золото, платина и алмазы . Добыча золота из россыпей невелика. Предполагают, что в будущем начнут разрабатывать морские россыпи золота. Основные районы золотоносных песков - Аляска (США).

Морское месторождение платины в заливе Гудньюс (Аляска) разрабатывается с 1926 г. и обеспечивает 90% потребностей США в платине.

На африканском шельфе у берегов Намибии известен и разрабатывается район подводной добычи алмазов, которая оказалась вполне рентабельной.

Среди полезных ископаемых океанского дна наибольший практический интерес представляют железомарганцевые конкреции и фосфориты. По химическому составу конкреции - полиминеральная руда, содержащая ценные металлы: никель, кобальт и медь. Конкреции наиболее распространены в акватории Тихого океана, запасы конкреций в котором оцениваются в 1,5·10 12 т. Суммарные ресурсы Индийского и Атлантического океанов равны 1·10 11 т. Содержание в конкрециях отдельных элементов во много раз превышает запасы их в месторождениях суши.

Фосфориты . Фосфориты широко распространены на шельфе и частично на материковом склоне Мирового океана. Наиболее крупные месторождения расположены у берегов Калифорнии. Общие запасы сырья оцениваются в 1,5-3 млрд. т. Фосфориты обнаружены у берегов Чили, Перу, Мексики, Аргентины, Японии, Австралии, Мадагаскара, Намибии, Южно-Африканской Республики.

Общие запасы фосфоритов на шельфе составляют не менее 30 млрд. т, но экономически выгодно для разработки лишь 10% этого количества.

При современных темпах потребления фосфоритов в качестве удобрений этого количества хватит на ближайшие 200-1000 лет.

Загрязнение океана . В Мировой океан, занимающий 2/3 общей площади Земли, попадает большинство отходов с суши и атмосферы. По данным ЮНЕСКО, в океан ежегодно сбрасывается 6,5 млн. т фосфора, 2,3 млн. т свинца, 320 млн. т железа.

Нефть и нефтепродукты в настоящее время являются одним из основных видов загрязнения океана. Основные источники поступления - нефтяные скважины, танкеры и речной сток. К особенно тяжелым последствиям приводят аварии нефтеналивных судов. Так, в 1967 г. из супертанкера «Тори-Каньон», севшего на мель у берегов Англии, вылилось в море 117 тыс. т нефти, которая вызвала массовую гибель морских рыб и птиц.

По оценкам специалистов, суммарное количество нефти, поступающей в океан, составляет от 2 до 10 млн. т.

Нефть и нефтепродукты загрязняют огромные пространства, покрывая водоемы тонкой пленкой. 1 т нефти покрывает пленкой 12 км 2 поверхности океана. Нефтяная пленка затрудняет газообмен между водой и атмосферой, а в Мировом океане производится более половины всего земного кислорода.

Морские животные (планктон, нектон) могут усваивать растворенную нефть, которая оказывает вредное воздействие также на виды, их поедающие. Нефтяное загрязнение приводит к гибели 1/3 молодых морских организмов.

Нефть погубила бы океан, если бы не было нефтеокисляющих бактерий. Борьба с нефтяным загрязнением сложная и неотложная задача.

С промышленным стоком в океанскую среду попадают металлы - свинец, ртуть, кадмий, мышьяк, сурьма, хром, медь, цинк и ряд других. Многие тяжелые металлы являются токсичными, аккумулируясь в морских организмах, могут вызвать гибель их или сделать опасными для употребления в пищу.

В последние годы в океан стало попадать огромное количество моющих синтетических веществ, которые губят рыбную молодь и водоросли.

Значительно возросло количество твердых отходов: тара, мусор. Так, в районе Гавайских островов, по подсчетам американских специалистов, плавает 35 млн. пустых пластмассовых бутылок. Загрязненность Средиземного моря в 1977 г. по сравнению с 1974 г. полимерными материалами, по оценке советских ученых, возросла в 4 раза.

Беспорядочное загрязнение Мирового океана может вызвать необратимые процессы и привести к гибели флоры и фауны. Защита Мирового океана от загрязнения - проблема международная.

Мировой океан как источник сырья в состоянии обеспечить длительный прогресс человечества при условии сохранения чистоты его вод.