Функции и строение коры головного мозга. Функции зон коры головного мозга

Кора головного мозга - высший отдел центральной нервной системы, обеспечивающий функционирование организма как единого целого при его взаимодействии с окружающей средой.

головного мозга (кора большого мозга, новая кора) представляет собой слой серого вещества, состоящего из 10-20 млрд и покрывающего большие полушария (рис. 1). Серое вещество коры составляет более половины всего серого вещества ЦНС. Суммарная площадь серого вещества коры — около 0,2 м 2 , что достигается извилистой складчатостью ее поверхности и наличием борозд разной глубины. Толщина коры в ее разных участках колеблется от 1,3 до 4,5 мм (в передней центральной извилине). Нейроны коры располагаются в шести слоях, ориентированных параллельно ее поверхности.

В участках коры, относящихся к , имеются зоны с трехслойным и пятислойным расположением нейронов в структуре серого вещества. Эти участки филогенетически древней коры занимают около 10% поверхности полушарий мозга, остальные 90% составляют новую кору.

Рис. 1. Моля латеральной поверхности коры большого мозга (по Бродману)

Строение коры головного мозга

Кора большого мозга имеет шестислойное строение

Нейроны разных слоев различаются по цитологическим признакам и функциональным свойствам.

Молекулярный слой — самый поверхностный. Представлен небольшим числом нейронов и многочисленными ветвящимися дендритами пирамидных нейронов, лежащих в более глубоких слоях.

Наружный зернистый слой сформирован плотно расположенными многочисленными мелкими нейронами разной формы. Отростки клеток этого слоя образуют кортикокортикальные связи.

Наружный пирамидальный слой состоит из пирамидных нейронов средней величины, отростки которых также участвуют в образовании кортикокортикальных связей между соседними областями коры.

Внутренний зернистый слой подобен второму слою по виду клеток и расположению волокон. В слое проходят пучки волокон, связывающие различные участки коры.

К нейронам этого слоя проводятся сигналы от специфических ядер таламуса. Слой очень хорошо представлен в сенсорных областях коры.

Внутренний пирамидный слои образован средними и крупными пирамидными нейронами. В двигательной области коры эти нейроны особенно крупные (50-100 мкм) и получили название гигантских, пирамидных клеток Беца. Аксоны этих клеток формируют быстропроводящие (до 120 м/с) волокна пирамидного тракта.

Слой полиморфных клеток представлен преимущественно клетками, аксоны которых образуют кортикоталамические пути.

Нейроны 2-го и 4-го слоев коры участвуют в восприятии, переработке поступающих к ним сигналов от нейронов ассоциативных областей коры. Сенсорные сигналы из переключающих ядер таламуса поступают преимущественно к нейронам 4-го слоя, выраженность которого наибольшая в первичных сенсорных областях коры. К нейронам 1-го и других слоев коры поступают сигналы из других ядер таламуса, базальных ганглиев, ствола мозга. Нейроны 3-го, 5-го и 6-го слоев формируют эфферентные сигналы, посылаемые в другие области коры и по нисходящим путям в нижележащие отделы ЦНС. В частности, нейроны 6-го слоя формируют волокна, следующие в таламус.

В нейронном составе и цитологических особенностях разных участков коры имеются значительные отличия. По этим отличиям Бродман разделил кору на 53 цитоархитектонических поля (см. рис. 1).

Расположение многих из этих нолей, выделенных на основе гистологических данных, совпадает по топографии с расположением корковых центров, выделенных на основе выполняемых ими функций. Используются и другие подходы деления коры на области, например, на основе содержания в нейронах определенных маркеров, по характеру нейронной активности и другим критериям.

Белое вещество полушарий головного мозга образовано нервными волокнами. Выделяют ассоциативные волокна, подразделяемые на дугообразные волокна, но которым сигналы передаются между нейронами рядом лежащих извилин и длинные продольные пучки волокон, доставляющие сигналы к нейронам более удаленных участков одноименного полушария.

Комиссуральные волокна - поперечные волокна, передающие сигналы между нейронами левого и правого полушарий.

Проекционные волокна - проводят сигналы между нейронами коры и других отделов мозга.

Перечисленные виды волокон участвуют в создании нейронных цепей и сетей, нейроны которых расположены на значительных расстояниях друг от друга. В коре имеется также особый вид локальных нейронных цепей, образованных рядом расположенными нейронами. Эти нейронные структуры получили название функциональных кортикальных колонок. Нейронные колонки образованы группами нейронов, расположенных друг над другом перпендикулярно поверхности коры. Принадлежность нейронов к одной и той же колонке можно определить по повышению их электрической активности на раздражение одного и того же рецептивного поля. Такая активность регистрируется при медленном перемещении регистрирующего электрода в коре в перпендикулярном направлении. Если регистрировать электрическую активность нейронов, расположенных в горизонтальной плоскости коры, то отмечается повышение их активности при раздражении различных рецептивных полей.

Диаметр функциональной колонки составляет до 1 мм. К нейронам одной функциональной колонки поступают сигналы от одного и того же афферентного таламокортикального волокна. Нейроны соседних колонок связаны друг с другом отростками, с помощью которых обмениваются информацией. Наличие в коре таких взаимосвязанных функциональных колонок увеличивает надежность восприятия и анализа информации, поступающей к коре.

Эффективность восприятия, обработки и использования информации корой для регуляции физиологических процессов обеспечивается также соматотопическим принципом организации сенсорных и моторных полей коры. Суть такой организации заключается в том, что в определенной (проекционной) области коры представлены не любые, а топографически очерченные участки рецептивного поля поверхности тела, мышц, суставов или внутренних органов. Так, например, в соматосенсорной коре поверхность тела человека спроецирована в виде схемы, когда в определенной точке коры представлены рецептивные поля конкретной области поверхности тела. Строгим топографическим образом в первичной моторной коре представлены эфферентные нейроны, активация которых вызывает сокращение определенных мышц тела.

Полям коры присущ также экранный принцип функционирования. При этом рецепторный нейрон посылает сигнал не на одиночный нейрон или в одиночную точку коркового центра, а на сеть или ноле нейронов, связанных отростками. Функциональными ячейками этого поля (экрана) являются колонки нейронов.

Кора мозга, формируясь на поздних этапах эволюционного развития высших организмов, в определенной мере подчинила себе все нижележащие отделы ЦНС и способна корригировать их функции. В то же время функциональная активность коры больших полушарий определяется притоком к ней сигналов от нейронов ретикулярной формации ствола мозга и сигналов от рецептивных полей сенсорных систем организма.

Функциональные области коры мозга

По функциональному признаку в коре выделяют сенсорные, ассоциативные и двигательные области.

Сенсорные (чувствительные, проекционные) области коры

Они состоят из зон, содержащих нейроны, активация которых афферентными импульсами от сенсорных рецепторов или прямым воздействием раздражителей вызывает появление специфических ощущений. Эти зоны имеются в затылочной (поля 17-19), теменной (ноля 1-3) и височной (поля 21-22, 41-42) областях коры.

В сенсорных зонах коры выделяют центральные проекционные поля, обеспечивающие топкое, четкое восприятие ощущений определенных модальностей (свет, звук, прикосновение, тепло, холод) и вторичные проекционные ноля. Функцией последних является обеспечение понимания связи первичного ощущения с другими предметами и явлениями окружающего мира.

Зоны представительства рецептивных полей в сенсорных зонах коры в значительной мере перекрываются. Особенность нервных центров в области вторичных проекционных полей коры — их пластичность, которая проявляется возможностью перестройки специализации и восстановления функций после повреждения какого-либо из центров. Эти компенсаторные возможности нервных центров особенно выражены в детском возрасте. В то же время повреждение центральных проекционных полей после перенесенных заболевании, сопровождается грубым нарушением функций чувствительности и часто невозможностью ее восстановления.

Зрительная кора

Первичная зрительная кора (VI, поле 17) располагается по обеим сторонам шпорной борозды на медиальной поверхности затылочной доли головного мозга. В соответствии с выявлением па неокрашенных срезах зрительной коры чередующихся белых и темных полос ее называют также стриарной (полосатой) корой. К нейронам первичной зрительной коры посылают зрительные сигналы нейроны латерального коленчатого тела, которые получают сигналы от ганглиозных клеток сетчатки. Зрительная кора каждого полушария получает визуальные сигналы от ипсилатеральной и контралатеральной половин сетчатки обоих глаз и их поступление к нейронам коры организовано по соматотопическому принципу. Нейроны, к которым поступают зрительные сигналы от фоторецепторов, топографически расположены в зрительной коре подобно рецепторам в сетчатке глаза. При этом область желтого пятна сетчатки имеет относительно большую зону представительства в коре, чем другие области сетчатки.

Нейроны первичной зрительной коры ответственны за зрительное восприятие, которое на основе анализа входных сигналов проявляется их способностью обнаруживать зрительный стимул, определять его специфическую форму и ориентацию в пространстве. Упрощенно можно представить сенсорную функцию зрительной коры в решении задачи и ответе на вопрос, что представляет собой зрительный объект.

В анализе других качеств зрительных сигналов (например, расположения в пространстве, движения, связи с другими событиями и т.д.) принимают участие нейроны полей 18 и 19 экстрастриарной коры, расположенных но соседству с нолем 17. Информация о сигналах, поступивших в сенсорные зрительные зоны коры, передастся для дальнейшего анализа и использования зрения для выполнения других функций мозга в ассоциативные области коры и другие отделы мозга.

Слуховая кора

Расположена в латеральной борозде височной доли в области извилины Гешля (AI, поля 41-42). К нейронам первичной слуховой коры поступают сигналы от нейронов медиальных коленчатых тел. Волокна слуховых путей, проводящие звуковые сигналы в слуховую кору, организованы тонотопически, и это позволяет нейронам коры получать сигналы от определенных слуховых рецепторных клеток кортиева органа. Слуховая кора регулирует чувствительность слуховых клеток.

В первичной слуховой коре формируются звуковые ощущения и проводится анализ отдельных качеств звуков, позволяющий ответить на вопрос, что представляет собой воспринятый звук. Первичная слуховая кора играет важную роль в анализе коротких звуков, интервалов между звуковыми сигналами, ритма, звуковой последовательности. Более сложный анализ звуков осуществляется в ассоциативных областях коры, смежных с первичной слуховой. На основе взаимодействия нейронов этих областей коры осуществляется бинауральный слух, определяются характеристики высоты, тембра, громкости звука, принадлежность звука, формируется представление о трехмерном звуковом пространстве.

Вестибулярная кора

Располагается в верхней и средней височных извилинах (поля 21-22). К ее нейронам поступают сигналы от нейронов вестибулярных ядер ствола мозга, связанных афферентными связями с рецепторами полукружных каналов вестибулярного аппарата. В вестибулярной коре формируется ощущение о положении тела в пространстве и ускорении движений. Вестибулярная кора взаимодействует с мозжечком (через височно-мостомозжечковый путь), участвует в регуляции равновесия тела, приспособлении позы к осуществлению целенаправленных движений. На основе взаимодействия этой области с соматосенсорной и ассоциативными областями коры происходит осознание схемы тела.

Обонятельная кора

Расположена в области верхней части височной доли (крючок, ноля 34, 28). Кора включает ряд ядер и относится к структурам лимбической системы. Ее нейроны расположены в трех слоях и получают афферентные сигналы от митральных клеток обонятельной луковицы, связанных афферентными связям с обонятельными рецепторными нейронами. В обонятельной коре проводится первичный качественный анализ запахов и формируется субъективное ощущение запаха, его интенсивности, принадлежности. Повреждение коры ведет к снижению обоняния или к развитию аносмии — потере обоняния. При искусственном раздражении этой области возникают ощущения различных запахов по типу галлюцинаций.

Вкусовая кора

Расположена в нижней части соматосенсорной извилины, непосредственно кпереди от области проекции лица (поле 43). Ее нейроны получают афферентные сигналы от релейных нейронов таламуса, которые связаны с нейронами ядра одиночного тракта продолговатого мозга. К нейронам этого ядра поступают сигналы непосредственно от чувствительных нейронов, образующих синапсы на клетках вкусовых луковиц. Во вкусовой коре проводится первичный анализ вкусовых качеств горького, соленого, кислого, сладкого и на основе их суммации формируется субъективное ощущение вкуса, его интенсивности, принадлежности.

Сигналы запахов и вкуса достигают нейронов передней части островковой коры, где на основе их интеграции формируется новое, более сложное качество ощущений, определяющее наше отношение к источникам запаха или вкуса (например, к пище).

Соматосенсорная кора

Занимает область постцентральной извилины (SI, поля 1-3), включая парацентральную дольку на медиальной стороне полушарий (рис. 9.14). В соматосенсорную область поступают сенсорные сигналы от нейронов таламуса, связанных спиноталамическими путями с рецепторами кожи (тактильная, температурная, болевая чувствительность), проприорецепторами (мышечных веретен, суставных сумок, сухожилий) и интерорецепторами (внутренних органов).

Рис. 9.14. Важнейшие центры и области коры большого мозга

Из-за перекреста афферентных путей в соматосенсорную зону левого полушария приходит сигнализация от правой стороны тела, соответственно в правое полушарие — от левой стороны тела. В этой сенсорной области коры соматотопически представлены все части тела, но при этом наиболее важные рецептивные зоны пальцев рук, губ, кожи лица, языка, гортани занимают относительно большие площади, чем проекции таких поверхностей тела, как спина, передняя часть туловища, ноги.

Расположение представительства чувствительности частей тела вдоль постцентральной извилины часто называют «перевернутый гомункулюс», так как проекция головы и шеи находится в нижней части постцентральной извилины, а проекция каудальной части туловища и ног — в верхней части. При этом чувствительность голеней и стоп проецируется на кору пара- центральной дольки медиальной поверхности полушарий. Внутри первичной соматосенсорной коры имеется определенная специализация нейронов. Например, нейроны поля 3 получают преимущественно сигналы от мышечных веретен и механорецепторов кожи, поля 2 — от рецепторов суставов.

Кору постцентральной извилины относят к первичной соматосенсорной области (SI). Ее нейроны посылают обработанные сигналы к нейронам вторичной соматосенсорной коры (SII). Она располагается кзади от постцентральной извилины в теменной коре (поля 5 и 7) и принадлежит к ассоциативной коре. Нейроны SII не получают прямых афферентных сигналов от нейронов таламуса. Они связаны с нейронами SI и нейронами других областей коры мозга. Это позволяет проводить здесь интегральную оценку сигналов, попадающих в кору по спиноталамическому пути с сигналами, поступающими из других (зрительной, слуховой, вестибулярной и т.д.) сенсорных систем. Важнейшей функцией этих полей теменной коры является восприятие пространства и трансформация сенсорных сигналов в координаты моторных. В теменной коре формируется стремление (намерение, побуждение) осуществить моторное действие, что является основой для начала планирования в ней предстоящей моторной активности.

Интеграция различных сенсорных сигналов связана с формированием различных ощущений, адресуемых к разным частям тела. Эти ощущения используются как для формирования психических, так и других ответных реакций, примерами которых могут быть движения при одновременном участии мышц обеих сторон тела (например, перемещение, ощупывание обеими руками, хватание, однонаправленное движение обеими руками). Функционирование этой области необходимо для узнавания предметов на ощупь и определения пространственного расположения этих предметов.

Нормальная функция соматосенсорных областей коры является важным условием формирования таких ощущений как тепло, холод, боль и их адресации к определенной части тела.

Повреждение нейронов области первичной соматосенсорной коры ведет к снижению различных видов чувствительности на противоположной стороне тела, а локальное повреждение — к потере чувствительности в определенной части тела. Особенно ранимой при повреждении нейронов первичной соматосенсорной коры является дискриминационная чувствительность кожи, а наименее — болевая. Повреждение нейронов вторичной соматосенсорной области коры может сопровождаться нарушением способности распознания предметов на ощупь (тактильная агнозия) и навыков использования предметов (апраксия).

Двигательные области коры

Около 130 лет тому назад исследователи, нанося точечные раздражения на кору мозга электрическим током, обнаружили, что воздействие на поверхность передней центральной извилины вызывает сокращение мышц противоположной стороны тела. Так было обнаружено наличие одной из моторных зон коры мозга. В последующем оказалось, что к организации движений имеют отношение несколько областей коры мозга и его другие структуры, а в областях моторной коры имеются не только двигательные нейроны, но и нейроны, осуществляющие другие функции.

Первичная моторная кора

Первичная моторная кора располагается в передней центральной извилине (MI, поле 4). Ее нейроны получают основные афферентные сигналы от нейронов соматосенсорной коры — полей 1, 2, 5, премоторной коры и таламуса. Кроме того, через вентролатеральный таламус в MI посылают сигналы нейроны мозжечка.

От пирамидных нейронов Ml начинаются эфферентные волокна пирамидного пути. Часть волокон этого пути следует к моторным нейронам ядер черепных нервов ствола мозга (кортикобульбарный тракт), часть — к нейронам стволовых моторных ядер (красное ядро, ядра ретикулярной формации, стволовые ядра, связанные с мозжечком) и часть — к интер- и моторным нейронам спинного мозга (кортикоспинальный тракт).

Имеется соматотопическая организация расположения нейронов в MI, контролирующих сокращение разных мышечных групп тела. Нейроны, контролирующие мышцы ног и туловища, расположены в верхних участках извилины и занимают относительно малую площадь, а контролирующие мышцы рук, особенно пальцев, лица, языка и глотки расположены в нижних участках и занимают большую площадь. Таким образом, в первичной двигательной коре относительно большую площадь занимают те нейронные группы, которые управляют мышцами, осуществляющими разнообразные, точные, мелкие, тонко регулируемые движения.

Поскольку многие нейроны Ml увеличивают электрическую активность непосредственно перед началом произвольных сокращений, то первичной моторной коре отводят ведущую роль в контроле активности моторных ядер ствола и мотонейронов спинного мозга и инициации произвольных, целенаправленных движений. Повреждение поля Ml ведет к парезу мышц и невозможности осуществления тонких произвольных движений.

Вторичная моторная кора

Включает области премоторной и дополнительной моторной коры (МII, поле 6). Премоторная кора расположена в поле 6, на боковой поверхности мозга, кпереди от первичной моторной коры. Ее нейроны получают через таламус афферентные сигналы из затылочной, соматосенсорной, теменной ассоциативной, префронтальной областей коры и мозжечка. Обработанные в ней сигналы нейроны коры посылают по эфферентным волокнам в моторную кору MI, небольшое число — в спинной мозг и большее — в красные ядра, ядра ретикулярной формации, базальные ганглии и мозжечок. Премоторная кора играет основную роль в программировании и организации движений, находящихся под контролем зрения. Кора участвует в организации позы и вспомогательных движений для действий, осуществляемых дистальными мышцами конечностей. Повреждение прсмотор- ной коры часто вызывает тенденцию повторного выполнения начатого движения (персеверация), даже если осуществленное движение достигло цели.

В нижней части премоторной коры левой лобной доли, непосредственно кпереди от участка первичной моторной коры, в которой представлены нейроны, контролирующие мышцы лица, располагается речевая область , или моторный центр речи Брока. Нарушение ее функции сопровождается нарушением артикуляции речи, или моторной афазией.

Дополнительная моторная кора располагается в верхней части поля 6. Ее нейроны получают афферентные сигналы из соматосснсорной, теменной и префронтальной областей коры головного мозга. Обработанные в ней сигналы нейроны коры посылают по эфферентным волокнам в первичную моторную кору MI, спинной мозг, стволовые моторные ядра. Активность нейронов дополнительной моторной коры повышается раньше, чем нейронов коры MIи главным образом в связи с осуществлением сложных движений. При этом возрастание нейронной активности в дополнительной моторной коре не связано с движениями как таковыми, для этого достаточно мысленно представить модель предстоящих сложных движений. Дополнительная моторная кора принимает участие в формировании программы предстоящих сложных движений и в организации моторных реакций на специфичность сенсорных стимулов.

Поскольку нейроны вторичной моторной коры посылают множество аксонов в поле MI, ее считают в иерархии моторных центров организации движений более высокой структурой, стоящей над моторными центрами моторной коры MI. Нервные центры вторичной моторной коры могут оказывать влияние на активность моторных нейронов спинного мозга двумя путями: непосредственно через кортикоспинальный путь и через поле MI. Поэтому их иногда называют супрамоторными полями, в функцию которых входит инструктирование центров поля MI.

Из клинических наблюдений известно, что сохранение нормальной функции вторичной моторной коры важно для осуществления точных движений руки, и особенно для выполнения ритмических движений. Так, например, при их повреждении пианист перестает чувствовать ритм и выдерживать интервал. Нарушается способность к осуществлению противоположных движений руками (манипулирование обоими руками).

При одновременном повреждении моторных зон MI и MII коры утрачивается способность к тонким координированным движениям. Точечные раздражения в этих областях моторной зоны сопровождаются активацией не отдельных мышц, а целой группы мышц, вызывающих направленное движение в суставах. Эти наблюдения послужили поводом для формирования вывода о том, что в моторной коре представлены не столько мышцы, сколько движения.

Префронтальная кора

Располагается в области поля 8. Ее нейроны получают основные афферентные сигналы из затылочной зрительной, теменной ассоциативной коры, верхних холмиков четверохолмия. Обработанные сигналы передаются по эфферентным волокнам в премоторную кору, верхние холмики четверохолмия, стволовые моторные центры. Кора играет определяющую роль в организации движений, находящихся под контролем зрения и принимает непосредственное участие в инициации и контроле движений глаз и головы.

Механизмы, реализующие превращение замысла движения в конкретную моторную программу, в залпы импульсов, посылаемых к определенным мышечным группам, остаются недостаточно понятными. Считается, что замысел движения формируется благодаря функциям ассоциативной и других областей коры, взаимодействующих со многими структурами головного мозга.

Информация о замысле движения передается в двигательные области лобной коры. Двигательная кора через нисходящие пути активирует системы, обеспечивающие выработку и использование новых двигательных программ или использование старых, уже отработанных на практике и хранящихся в памяти. Составной частью этих систем являются базальные ганглии и мозжечок (см. их функции выше). Программы движения, выработанные при участии мозжечка и базальных ганглиев, передаются через таламус в моторные зоны и прежде всего в первичную моторную область коры. Эта область непосредственно инициирует исполнение движений, подключая к нему определенные мышцы и обеспечивая последовательность смены их сокращения и расслабления. Команды коры передаются на моторные центры ствола мозга, спинальные мотонейроны и мотонейроны ядер черепных нервов. Мотонейроны в осуществлении движений выполняют роль конечного пути, через который двигательные команды передаются непосредственно к мышцам. Особенности передачи сигналов от коры к моторным центрам ствола и спинного мозга описаны в главе, посвященной ЦНС (ствол мозга, спинной мозг).

Ассоциативные области коры

У человека ассоциативные области коры занимают около 50% площади всей коры большого мозга. Они располагаются в участках между сенсорными и двигательными областями коры. Ассоциативные области не имеют четких границ со вторичными сенсорными областями как по морфологическим, так и по функциональным признакам. Выделяют теменную, височную и лобную ассоциативные области коры больших полушарий.

Теменная ассоциативная область коры. Располагается в полях 5 и 7 верхней и нижней теменных долек мозга. Область граничит впереди с соматосенсорной корой, сзади — со зрительной и слуховой корой. К нейронам теменной ассоциативной области могут поступать и активировать их зрительные, звуковые, тактильные, проприоцептивные, болевые, сигналы из аппарата памяти и другие сигналы. Часть нейронов является полисенсорной и может повышать свою активность при поступлении к ней соматосенсорных и визуальных сигналов. Однако степень повышения активности нейронов ассоциативной коры на поступление афферентных сигналов зависит от текущей мотивации, внимания субъекта и информации, извлекаемой из памяти. Она остается незначительной, если поступающий из сенсорных областей мозга сигнал для субъекта безразличен, и существенно возрастает, если он совпал с имеющейся мотивацией и привлек его внимание. Например, при предъявлении обезьяне банана активность нейронов ассоциативной теменной коры остается невысокой, если животное сыто, и наоборот, активность резко возрастает у голодных животных, которым нравятся бананы.

Нейроны теменной ассоциативной коры связаны эфферентными связями с нейронами префронтальной, премоторной, моторной областей лобной доли и поясной извилины. Исходя из экспериментальных и клинических наблюдений, принято считать, что одной из функций коры поля 5 является использование соматосенсорной информации для осуществления целенаправленных произвольных движений и манипулирования объектами. Функцией коры поля 7 является интеграция визуальных и соматосенсорных сигналов для координации движений глаз и визуально-ведомых движений руки.

Нарушением этих функций теменной ассоциативной коры при повреждении ее связей с корой лобной доли или заболеванием самой лобной доли, объясняются симптомы последствий заболеваний, локализованных в области теменной ассоциативной коры. Они могут проявляться затруднением в понимании смыслового содержания сигналов (агнозия), примером которого может быть потеря способности распознавания формы и пространственного расположения объекта. Могут нарушаться процессы трансформации сенсорных сигналов в адекватные моторные действия. В последнем случае больной теряет навыки практического использования хорошо знакомых инструментов и предметов (апраксия), и у него может развиться невозможность осуществления визуально-ведомых движений (например, движение руки в направлении предмета).

Лобная ассоциативная область коры. Располагается в префронтальной коре, которая является частью коры лобной доли, локализующейся кпереди от полей 6 и 8. Нейроны лобной ассоциативной коры получают обработанные сенсорные сигналы по афферентным связям от нейронов коры затылочной, теменной, височной долей мозга и от нейронов поясной извилины. Лобная ассоциативная кора получает сигналы о текущем мотивационном и эмоциональном состояниях от ядер таламуса, лимбической и других структур мозга. Кроме того, лобная кора может оперировать абстрактными, виртуальными сигналами. Эфферентные сигналы ассоциативная лобная кора посылает обратно, в структуры мозга, от которых они были получены, в моторные области лобной коры, хвостатое ядро базальных ганглиев и гипоталамус.

Эта область коры играет первостепенную роль в формировании высших психических функций человека. Она обеспечивает формирование целевых установок и программ осознанных поведенческих реакций, узнавание и смысловую оценку предметов и явлений, понимание речи, логическое мышление. После обширных повреждений лобной коры у больных могут развиться апатия, снижение эмоционального фона, критичного отношения к своим собственным поступкам и поступкам окружающих, самодовольство, нарушение возможности использования прошлого опыта для изменения поведения. Поведение больных может стать непредсказуемым и неадекватным.

Височная ассоциативная область коры. Располагается в полях 20, 21, 22. Нейроны коры получают сенсорные сигналы от нейронов слуховой, экстрастриарной зрительной и префронтальной коры, гиппокампа и миндалины.

После двухстороннего заболевания височных ассоциативных областей с вовлечением в патологический процесс гиппокампа или связей с ним у больных могут развиться выраженные нарушения памяти, эмоционального поведения, неспособность сосредоточения внимания (рассеянность). У части людей при повреждении нижневисочной области, где предположительно располагается центр узнавания лица, может развиться зрительная агнозия — неспособность узнавания лиц знакомых людей, предметов, при сохранности зрения.

На границе височной, зрительной и теменной областей коры в нижней теменной и задней части височной доли располагается ассоциативный участок коры, получивший название сенсорного центра речи, или центра Вернике. После его повреждения развивается нарушение функции понимания речи при сохранности речедвигательной функции.

Непосредственное раздражение определённых участков коры головного мозга приводит к судорогам мышц, соответствующих участку коры - проекционной двигательной зоне. При раздражении верхней трети передней центральной извилины возникает судорога мышц ноги, средней - руки, нижней - лица, причём, на стороне, противоположной очагу раздражения в полушарии.

Эти судороги носят название парциальных (джексоновских). Их открыл английский невролог Д.Х.Джэксон (1835-1911). В проекционной двигательной зоне каждого полушария головного мозга представлены все мышцы противоположной половины тела.

Кора больших полушарий головного мозга (cortex cerebri , substantia corticalis ; син. кора больших полушарий, кора головного мозга, мантия, плащ) - слой серого вещества (толщиной 1-5 мм), покрывающий полушария большого мозга у млекопитающих животных и человека; высший отдел ЦНС, регулирующий и координирующий все жизненно важные функции организма при его взаимодействии с окружающей средой, К. б. п. - материальный субстрат высшей нервной и психической деятельности (хотя эта деятельность - результат работы всего мозга как единого целого). У человека К. б. п. составляет в среднем 44% от объема полушарий, ее поверхность - до 1670 см 2 .

Выделяют древнюю, старую и новую кору. Древняя и старая кора играют существенную роль в регуляции вегетативных функций, осуществлении инстинктивного поведения, в потребностно-эмоциональной сфере. Функции новой коры многообразны и зависят от цитоархитектонических зон. Новая кора (далее К. б. п.) играет важную роль в когнитивных процессах, организаций целенаправленного поведения и у человека в осуществлении высших психических функций.

Выделяют корковые зоны проекционные (см.) - первичные и вторичные , и ассоциативные (см. Ассоциативные области ) - третичные и двигательную кору . Основным принципом функциональной организации проекционных зон в коре является принцип топической локализации, который основан на четких анатомических связях между отдельными воспринимающими элементами периферии и корковыми клетками проекционных зон.



Проекционные сенсорные зоны, включающие первичные и вторичные корковые поля , принимают и обрабатывают информацию определенной модальности от органов чувств противоположной половины тела (корковые концы анализаторов по И.П. Павлову). К их числу относятся зрительная кора, расположенная в затылочной доле, слуховая - в височной, сомато-сенсорная - в теменной доле.

Вторичные, проекционные зоны также получают сенсорные сигналы преимущественно одной модальности, ее нейронная организация создает условия для восприятия более сложных признаков сигнала.

Ассоциативные корковые зоны (третичные) - составляют у человека 1 / 3 поверхности коры больших полушарий. Их роль постепенно возрастает в ряду позвоночных вплоть до человека. Получив максимальное развитие у человека, А. к. з. приняли и новые, специфически человеческие функции: речь, письмо, интеллект и т.п. А. к. з. развились в передних отделах полушарий, заняв большую часть лобных долей (префронтальные отделы коры) и на стыке проекций главных анализаторов: зрительного, слухового и кожно-кинестетического (заднеассоциативные корковые зоны). Нервные клетки А. к. з. реагируют на стимулы многих модальностей, причем их ответы возникают не только на отдельные элементы объекта, но и на целые его комплексы.

Двигательная кора каждого полушария, занимающая задние отделы лобной доли, осуществляет контроль и управление двигательными действиями противоположной стороны тела.

Функционально различные области коры имеют развитую систему внутри-корковых связей. Симметричные корковые поля обоих полушарий связаны волокнами мозолистого тела. Система внутрикорковых связей и двусторонние связи с нижележащими отделами обеспечивают возможность формирования функциональных систем, включающих структуры разного уровня.

Афферентные и эфферентные проекционные зоны коры занимают относительно небольшую ее площадь. Большая часть поверхности коры занята третичными или межанализаторными зонами, называемыми ассоциативными.

Ассоциативные зоны коры занимают значительное пространство между лобной, затылочной и височной корой (60-70% новой коры). Они получают полимодальные входы от сенсорных обласРис. 52. Медиальная поверхность левого полушария:

1 - прецентральная извилина (двигательные зоны); 2 - поясная извилина (часть лимбической системы), отвечает за висцеральную чувствительность; 3 - мозолистое тело (основная комиссура); 4 - свод; 5 - лобная доля; 6 - обонятельные нервы, обонятельная луковица и обонятельный путь; 7 - височная доля; 8 - гиппокамп (часть лимбической системы); 9 - первичное проекционное зрительное поле (17 поле); 10 - вторичное проекционное зрительное поле (18 поле);

11 - затылочная доля; 12 - теменная доля; 13 - задняя центральная извилина (соматосенсорные зоны)

третей коры и таламических ассоциативных ядер и имеют выходы на двигательные зоны коры. Ассоциативные зоны обеспечивают интеграцию сенсорных входов и играют существенную роль в процессах высшей нервной и психической деятельности.

Функции чтения обеспечивает лексический центр (центр лексии). Центр лексии располагается в угловой извилине.

Графический анализатор, центр графии, функция письма

Функции письма обеспечивает графический центр (центр графии). Центр графии располагается в заднем отделе средней лобной извилины.

Счетный анализатор, центр калькуляции, функция счета

Функции счета обеспечивает счетный центр (центр калькуляции). Центр калькуляции располагается на стыке теменно-затылочной области.

Праксис, праксический анализатор, центр праксиса

Праксис - это способность к выполнению целенаправленных двигательных актов. Праксис формируется в процессе жизнедеятельности человека, начиная с грудного возраста, и обеспечивается сложной функциональной системой мозга с участием корковых полей теменной доли (нижняя теменная долька) и лобной доли, особенно левого полушария у правшей. Для нормального праксиса необходимы сохранность кинестетической и кинетической основы движений, зрительно-пространственной ориентировки, процессов программирования и контроля целенаправленных действий. Поражение праксической системы на том или ином уровне проявляется таким видом патологии, как апраксия. Термин «праксис» происходит от греческого слова «praxis», которое означает «действие». - это нарушение целенаправленного действия при отсутствии параличей мышц и сохранности составляющих его элементарных движений.

Гностический центр, центр гнозиса

В правом полушарии у правшей, в левом полушарии головного мозга у левшей представлены многие гностические функции. При поражении преимущественно правой теменной доли может возникать анозогнозия, аутопагнозия, конструктивная апраксия. С центром гнозиса также связаны музыкальный слух, ориентация в пространстве, центр смеха.

Память, мышление

Наиболее сложные корковые функции - это память и мышление. Эти функции не имеют четкой локализации.

Память, функция памяти

В реализации функции памяти участвуют различные участки. Лобные доли обеспечивают активную целенаправленную мнестическую деятельность. Задние гностические отделы коры связаны с частными формами памяти - зрительной, слуховой, тактильно-кинестической. Речевые зоны коры осуществляют процесс кодирования поступающей информации в словесные логико-грамматические системы и словесные системы. Медиобазальные отделы височной доли, в частности гиппокамп, переводят текущие впечатления в долговременную память. Ретикулярная формация обеспечивает оптимальный тонус коры, заряжая ее энергией.

Мышление, функция мышления

Функция мышления - это результат интегративной деятельности всего головного мозга, особенно лобных долей, которые участвуют в организации целенаправленной сознательной деятельности человека, мужчины, женщины. Происходят программирование, регуляция и контроль. При этом у правшей левое полушарие является основой преимущественно абстрактного словесного мышления, а правое полушарие связано главным образом с конкретным образным мышлением.

Развитие корковых функций начинается с первых месяцев жизни ребенка, достигает своего совершенства к 20 годам.

В последующих статьях мы остановимся на актуальных вопросах неврологии: зоны коры головного мозга, зоны больших полушарий, зрительная, зона коры, слуховая зона коры, моторные двигательные и чувствительные сенсорные зоны, ассоциативные, проекционные зоны, моторные и функциональные зоны, речевые зоны, первичные зоны коры головного мозга, ассоциативные, функциональные зоны, фронтальная кора, соматосенсорная зона, опухоль коры, отсутствие коры, локализация высших психических функций, проблема локализации, мозговая локализация, концепция динамической локализации функций, методы исследования, диагностики.

Кора головного мозга лечение

В Сарклиник применяются авторские методы восстановления работы коры головного мозга. Лечение коры головного мозга в России у взрослых, подростков, детей, лечение коры больших полушарий головного мозга в Саратове у мальчиков и девочек, парней и девушек, мужчин и женщин позволяет восстановить утраченные функции. У детей активизируется развитие коры головного мозга, центры головного мозга. У взрослых и детей лечится атрофия и субатрофия коры головного мозга, нарушение коры, торможение в коре, возбуждение в коре, повреждение коры, изменения в коре, болит кора, сужение сосудов, плохое кровоснабжение, раздражение и дисфункция коры, органическое поражение, инсульт, отслоение, повреждение, диффузные изменения, диффузная ирритация, отмирание, недоразвитие, разрушение, болезни, вопрос доктору Если кора головного мозга пострадала, то при правильном и адекватном лечении есть возможность восстановления ее функций.

. Имеются противопоказания. Необходима консультация специалиста.

Текст: ® SARCLINIC | Sarclinic.com \ Sаrlinic.ru Фото: MedusArt / Фотобанк Фотодженика / photogenica.ru Люди, изображенные на фото, - модели, не страдают от описанных заболеваний и/или все совпадения исключены.

глиальные клетки ; оно расположено в некоторых отделах глубинных мозговых структур, из этого вещества сформирована кора больших полушарий (а также мозжечка).

Каждое полушарие разделяется на пять долей, четыре из которых (лобная, теменная, затылочная и височная) примыкают к соответствующим костям черепного свода, а одна (островковая) находится в глубине, в ямке, которая разделяет лобную и височную доли.

Кора большого мозга имеет толщину в 1,5–4,5 мм, ее площадь увеличивается за счет присутствия борозд; она связана с другими отделами ЦНС, благодаря импульсам, которые проводят нейроны.

Полушария достигают примерно 80% от общей массы головного мозга. Они осуществляют регуляцию высших психических функций, тогда как мозговой ствол – низшие, которые связаны с деятельностью внутренних органов.

Три основные области выделяют на полушарной поверхности :

  • выпуклая верхнелатеральная, которая примыкает к внутренней поверхности черепного свода;
  • нижняя, с располагающимися передними и средними отделами на внутренней поверхности черепного основания и задними в области намета мозжечка;
  • медиальная расположена у продольной щели мозга.

Особенности устройства и деятельности

Кора большого мозга подразделяется на 4 вида:

  • древняя – занимает чуть более 0,5% всей поверхности полушарий;
  • старая – 2,2%;
  • новая – более 95%;
  • средняя – примерно 1,5%.

Филогенетически древняя кора большого мозга, представленная группами крупных нейронов, оттесняется новой к основанию полушарий, становясь узкой полоской. А старая, состоящая из трех клеточных слоев, смещается ближе к середине. Главная область старой коры – гиппокамп, являющийся центральным отделом лимбической системы . Средняя (промежуточная) кора представляет собой образование переходного типа, так как трансформация старых структур в новые осуществляется постепенно.

Кора головного мозга у человека, в отличие от таковой у млекопитающих, также ответственна за согласованную работу внутренних органов. Такое явление, при котором, возрастает роль коры в осуществлении всей функциональной деятельности организма, носит название кортикализация функций.

Одна из особенностей коры – ее электрическая активность, происходящая спонтанно. Нервные клетки, расположенные в этом отделе, обладают определенной ритмической активностью, отражающей биохимические, биофизические процессы. Активность обладает различной амплитудой и частотой (альфа-, бета-, дельта-, тета-ритмы), что зависит от влияния многочисленных факторов (медитации, фазы сна, переживания стресса, наличия судорог, новообразования).

Структура

Кора головного мозга представляет собой многослойное образование: каждый из слоев имеет свой определенный состав нейроцитов, конкретную ориентацию, расположение отростков.

Систематическое положение нейронов в коре носит название «цитоархитектоника», расположенные в определенном порядке волокна – «миелоархитектоника».

Кора больших полушарий головного мозга состоит из цитоархитектонических шесть слоев.

  1. Поверхностный молекулярный, в котором нервных клеток не очень много. Их отростки расположены в нем самом, и они не выходят за пределы.
  2. Наружный зернистый сформирован из пирамидальных и звездчатых нейроцитов. Отростки выходят из этого слоя и идут в последующие.
  3. Пирамидальный состоит из пирамидных клеток. Их аксоны направляются вниз, где оканчиваются или формируют ассоциативные волокна, а дендриты идут вверх, во второй слой.
  4. Внутренний зернистый образован звездчатыми клетками и малыми пирамидными. Дендриты идут в первый слой, боковые отростки разветвляются в пределах своего слоя. Аксоны протягиваются в верхние слои или в белое вещество.
  5. Ганглионарный образован большими пирамидными клетками. Здесь находятся самые крупные нейроциты коры. Дендриты направлены в первый слой или распределены в своем. Аксоны выходят из коры и начинают являться волокнами, связывающими различные отделы и структуры ЦНС между собой.
  6. Мультиформный – состоит из различных клеток. Дендриты идут к молекулярному слою (некоторые только до четвертого или пятого слоев). Аксоны направляются в вышележащие слои или выходят из коры в качестве ассоциативных волокон.

Кора головного мозга разделяется на области – так называемая горизонтальная организация . Всего их насчитывается 11, и они включают в себя 52 поля, каждое из которых имеет свой порядковый номер.

Вертикальная организация

Существует и вертикальное разделение – на колонки нейронов. При этом маленькие колонки объединяются в макроколонки, которые называют функциональным модулем. В основе таких систем находятся звездчатые клетки – их аксоны, а также горизонтальные связи их с боковыми аксонами пирамидальных нейроцитов. Все нервные клетки вертикальных колонок реагируют на афферентный импульс одинаково и вместе посылают эфферентный сигнал. Возбуждение в горизонтальном направлении обусловлено деятельностью поперечных волокон, которые следуют от одной колонки к другой.

Впервые обнаружил единицы, которые объединяют нейроны различных слоев по вертикали, в 1943г. Лоренте де Но – с помощью гистологии. Впоследствии это было подтверждено с помощью методов электрофизиологии на животных В. Маунткаслом.

Развитие коры во внутриутробном развитии начинается рано: уже в 8 недель у эмбриона появляется корковая пластина. Вначале дифференцируются нижние слои, а в 6 месяцев у будущего ребенка появляются все поля, которые присутствуют и у взрослого человека. Цитоархитектонические особенности коры к 7 годам полностью формируются, но тела нейроцитов увеличиваются еще до 18. Для образования коры необходимо согласованное перемещение и деление клеток-предшественниц, из которых появляются нейроны. Установлено, что на этот процесс влияет специальный ген.

Горизонтальная организация

Принято разделять зоны коры головного мозга на:

  • ассоциативные;
  • сенсорные (чувствительные);
  • моторные.

Учеными при изучении локализованных участков и их функциональных особенностей применялись разнообразные способы: раздражение химическое или физическое, частичное удаление мозговых участков, выработка условных рефлексов, регистрация биотоков мозга.

Чувствительные

Эти области занимают примерно 20% коры. Поражение таких зон ведет к нарушению чувствительности (снижение зрения, слуха, обоняния и т. п.). Площадь зоны напрямую зависит от количества нервных клеток, которые воспринимают импульс от определенных рецепторов: чем их больше, тем выше сензитивность. Выделяют зоны:

  • соматосенсорную (отвечает за кожную, проприоцептивную, вегетативную чувствительность) – она расположена в теменной доле (постцентральная извилина);
  • зрительную, двухстороннее повреждение которое приводит к полной слепоте, – находится в затылочной доле;
  • слуховую (расположена в височной доле);
  • вкусовую, находящуюся в теменной доле (локализация – постцентральная извилина);
  • обонятельную, двухстороннее нарушение которой приводит к потере обоняния (расположена в гиппокамповой извилине).

Нарушение слуховой зоны не приводит к глухоте, но появляются другие симптомы. Например, невозможность различения коротких звуков, смысла бытовых шумов (шагов, льющейся воды и т. п.) при сохранности различия звуков по высоте, длительности, тембру. Также может происходить амузия, заключающаяся в неспособности узнавать, воспроизводить мелодии, а также различать их между собой. Музыка также может сопровождаться неприятными ощущениями.

Импульсы, идущие по афферентным волокнам с левой стороны тела, воспринимаются правым полушарием, а с правой стороны – левым (повреждение левого полушария вызовет нарушение чувствительности с правой стороны и наоборот). Это связано с тем, что каждая постцентральная извилина связана с противоположной частью тела.

Двигательные

Моторные участки, раздражение которых вызывает движение мускулатуры, располагаются в передней центральной извилине лобной доли. Двигательные зоны сообщаются с сенсорными.

Двигательные пути в продолговатом мозге (и частично в спинном) образуют перекрест с переходом на противоположную сторону . Это приводит к тому, что раздражение, которое возникает в левом полушарии, поступает в правую половину туловища, и наоборот. Поэтому поражение участка коры одного из полушарий ведет к нарушению двигательной функции мышц с противоположной стороны туловища.

Моторная и сенсорная области, которые расположены в районе центральной борозды, объединяются в одно образование – сенсомоторную зону.

Неврология и нейропсихология накопили множество сведений о том, как поражение этих областей приводит не только к элементарным двигательным расстройствам (параличам, парезам, треморам), но и к нарушениям произвольных движений и действий с предметами – апраксиям. При их появлении могут нарушаться движения во время письма, происходить расстройства пространственных представлений, появляться бесконтрольные шаблонные движения.

Ассоциативные

Эти зоны ответственны за связывание поступающей сенсорной информации с той, которая была получена ранее и хранится в памяти. Кроме того, они позволяют сравнивать между собой информацию, которая идет от различных рецепторов. Ответная реакция на сигнал формируется в ассоциативной зоне и передается в зону двигательную. Таким образом, каждая ассоциативная область отвечает за процессы памяти, научения и мышления . Крупные ассоциативные зоны находятся рядом с соответствующими функционально сенсорными зонами. К примеру, какая-либо ассоциативная зрительная функция контролируется зрительной ассоциативной зоной, которая расположена рядом с сенсорным зрительным участком.

Установление закономерностей работы мозга, анализ его локальных нарушений и проверку его активности осуществляет наука нейропсихология, которая находится на стыке нейробиологии, психологии, психиатрии и информатики.

Особенности локализации по полям

Кора большого мозга пластична, что сказывается на переходе функций одного отдела, если произошло его нарушение, в другой. Это обусловлено тем, что анализаторы в коре имеют ядро, где происходит высшая деятельность, и периферию, которая отвечает за процессы анализа и синтеза в примитивном виде. Между ядрами анализаторов находятся элементы, которые принадлежат разным анализаторам. Если повреждение касается ядра, за его деятельность начинают отвечать периферические составляющие.

Таким образом, локализация функций, которыми обладает кора головного мозга, – понятие относительное, так как определенных границ не существует. Тем не менее, цитоархитектоника предполагает наличие 52 полей, которые сообщаются друг с другом проводящими путями:

  • ассоциативными (этот тип нервных волокон отвечает за деятельность коры в области одного полушария);
  • комиссуральными (связывают симметричные области обоих полушарий);
  • проекционными (способствуют сообщению коры, подкорковых структур с другими органами).

Таблица 1

Соответствующие поля

Двигательная

Чувствительная

Зрительная

Обонятельная

Вкусовая

Речедвигательная, которая включает центры:

Вернике, позволяющий воспринимать устную речь

Брока – отвечает за движение языковых мышц; поражение грозит полной потерей речи

Восприятия речи на письме

Итак, строение коры головного мозга предполагает рассмотрение ее в горизонтальной и вертикальной ориентации. В зависимости от этого, выделяют вертикальные колонки нейронов и зоны, расположенные в горизонтальной плоскости. Основные функции, которые выполняет кора, сводятся к осуществлению поведения, регуляции мышления, сознания. Кроме того, она обеспечивает взаимодействие организма с внешней средой и принимает участие в контроле работы внутренних органов.

Кора головного мозга — высший отдел ЦНС, который обеспечивает совершенную организацию поведения человека. По факту она предопределяет сознание, участвует в управлении мышлением, способствует обеспечению взаимосвязи с внешним миром и функционирования организма. Она устанавливает взаимодействие с внешним миром посредством рефлексов, что позволяет надлежащим образом адаптироваться к новым условиям.

Указанный отдел ответственный за работу самого мозга. Сверху определенных участков, взаимосвязанных с органами восприятия, образовались зоны, обладающие подкорковым белым веществом. Они важны при сложном обрабатывании данных. Вследствие появления такого органа в мозге начинается следующая стадия, на которой значение ее функционирования существенно возрастает. Данный отдел является органом, который выражает индивидуальность и сознательную деятельность индивида.

Общая информация о коре ГМ

Представляет собой поверхностный слой толщиной до 0,2 см, который покрывает полушария. Он предусматривает вертикально ориентированные нервные окончания. Этот орган содержит центростремительные и центробежные нервные отростки, нейроглии. Каждая доля этого отдела несет ответственность за определенные функции:

  • – слуховая функция и обоняние;
  • затылочная – зрительное восприятие;
  • теменная – осязание и вкусовые рецепторы;
  • лобная – речь, двигательная активность, сложные мыслительные процессы.

По факту кора предопределяет сознательную деятельность индивида, участвует в управлении мышлением, взаимодействует с внешним миром.

Анатомия

Выполняемые корой функции зачастую обусловлены ее анатомическим строением. Структура имеет свои характерные черты, выраженные в разном числе слоев, габаритах, анатомии образующих орган нервных окончаний. Специалисты выделяют следующие разновидности слоев, взаимодействующих между собой и помогающих функционировать системе в целом:

  • Молекулярный слой. Помогает создать хаотично связанных дендритных формирований с малым числом клеток, имеющих веретенообразную форму и обусловливающих ассоциативную деятельность.
  • Наружный слой. Выражается нейронами, имеющими разные очертания. После них локализуются внешние контуры структур, имеющих пирамидальную форму.
  • Наружный слой пирамидального типа. Предполагает наличие нейронов разных размеров. По форме данные клетки схожи с конусом. Сверху выходит дендрит, обладающий наибольшими размерами. связаны при помощи деления на незначительные образования.
  • Зернистый слой. Предусматривает нервные окончания незначительного размера, локализованных обособленно.
  • Пирамидальный слой. Предполагает наличие нейронных цепей, обладающих различными габаритами. Верхние отростки нейронов способны доходить до начального слоя.
  • Покров, содержащий нейронные связи, напоминающие веретено. Часть из них, находящаяся в нижней точке, может достигать уровня белого вещества.
  • Лобная доля
  • Играет ключевую роль для сознательной деятельности. Участвует в запоминании, внимании, мотивации и прочих задачах.

Предусматривает наличие 2 парных долей и занимает 2/3 всего мозга. Полушария осуществляют контроль противоположных сторон туловища. Так, левая доля регулирует работу мышц правой стороны и наоборот.

Лобные части имеют важное значение в последующем планировании, включая управление и принятие решений. Кроме того, они выполняют следующие функции:

  • Речевая. Способствует выражению словами мыслительных процессов. Поражение данного участку может повлиять на восприятие.
  • Моторика. Дает возможность влиять на двигательную активность.
  • Сравнительные процессы. Способствует проведению классификации предметов.
  • Запоминание. Каждый участок мозга имеет важное значение в процессах запоминания. Лобная часть формирует долгосрочную память.
  • Личностное формирование. Дает возможность взаимодействовать импульсам, памяти и прочим задачам, образующим главные характеристики индивида. Поражение лобной доли кардинальным образом меняет личность.
  • Мотивация. Большая часть чувствительных нервных отростков расположены в лобной части. Дофамин способствует поддержанию мотивационной составляющей.
  • Контроль внимания. Если лобные части не способны осуществлять управление вниманием, то формируется синдром нехватки внимания.

Теменная доля

Охватывает верхнюю и боковую части полушария, а также разделяются центральной бороздой. Функции, которые выполняет данный участок, различаются для доминантной и недоминантной сторон:

  • Доминантная (преимущественно левая). Несет ответственность за возможность понимания устройства целого через соотношение его составляющих и за синтез информации. Кроме того, дает возможность осуществления взаимосвязанных движений, которые требуются для получения конкретного результата.
  • Недоминантная (преимущественно правая). Центр, который перерабатывает данные, поступающие из затылочной части, и обеспечивает 3-хмерное восприятие происходящего. Поражение данного участка ведет к неспособности распознавания объектов, лиц, пейзажей. Так как зрительные образы перерабатываются в мозге обособленно от данных, поступающих из остальных органов чувств. Кроме того, сторона принимает участие в ориентации в пространстве человека.

Обе теменные части принимают участие в восприятии температурных изменений.

Височная

Она реализует сложную психическую функцию – речь. Расположена на обоих полушариях сбоку в нижней части, тесно взаимодействуя с близлежащими отделами. Данная часть коры обладает наиболее выраженными контурами.

Височные участки осуществляют обработку слуховых импульсов, преобразуя их в звуковой образ. Имеют важное значение в обеспечении речевых коммуникативных навыков. Непосредственно в данном отделе происходит распознавание услышанной информации, выбор языковых единиц для смысловой выраженности.

На сегодняшний день подтверждено, что возникновение сложностей с обонянием у больного преклонного возраста сигнализирует о формирующемся заболевании Альцгеймера.

Незначительный участок внутри височной доли (), осуществляет контроль долговременной памяти. Непосредственно височная часть накапливает воспоминания. Доминантный отдел взаимодействует с вербальной памятью, недоминантный способствует зрительному запоминанию образов.

Одновременное повреждение двух долей ведет к безмятежному состоянию, потере возможности идентификации внешних образов и повышенной сексуальности.

Островок

Островок (закрытая долька) расположен в глуби боковой борозды. От смежных отделов островок отделяется круговой бороздой. Верхний участок закрытой дольки разделяется на 2 части. Здесь проецируется вкусовой анализатор.

Формирующая дно латеральной борозды, закрытая долька является выступом, верхняя часть которого направлена наружу. Островок отделяется круговой бороздой от близлежащих долей, которые формируют покрышку.

Верхний отдел закрытой дольки подразделяется на 2 части. В первой локализуется прецентральная борозда, а находящаяся посреди них расположена передняя центральная извилина.

Борозды и извилины

Являют собой впадины и находящиеся посреди них складки, которые локализуются на поверхности мозговых полушарий. Борозды способствуют увеличению коры полушарий, не увеличивая объем черепной коробки.

Значимость данных участков заключается в том, что две трети всей коры располагаются в глуби борозд. Бытуют мнение, что полушария развиваются неодинаково в разных отделах, в результате этого напряжение будет также неравномерным в конкретных участках. Это может привести к формированию складок либо извилин. Другие ученые полагают, что большое значение имеет первоначальное развитие борозд.

Анатомическая структура рассматриваемого органа отличается многообразием функций.

Каждый отдел данного органа обладает специфическим предназначением, являясь своеобразным уровнем воздействия.

Благодаря им осуществляется все функционирование головного мозга. Нарушения в работе определенной зоны способно привести к сбоям в деятельности всего мозга.

Зона обработки импульсов

Данный участок способствует обработке нервных сигналов, поступающих через зрительные рецепторы, обоняние, осязание. Большинство рефлексов, взаимосвязанных с моторикой, будут обеспечены пирамидальными клетками. Зона, обеспечивающая обработку мышечных данных, характеризуется слаженной взаимосвязью всех слоев органа, что имеет ключевое значение на этапе соответствующего обрабатывания нервных сигналов.

Если кора мозга поражена на этом участке, то могут произойти нарушения в слаженном функционировании функций и действий по восприятию, неразрывно взаимосвязанных с моторикой. Внешне расстройства в двигательной части проявляются во время непроизвольной двигательной активности, судорогах, тяжелых проявлениях, которые ведут к параличу.

Зона сенсорного восприятия

Данная область отвечает за обработку импульсов, поступающих в мозг. По своей структуре она представляет собой систему взаимодействия анализаторов для установления взаимосвязи со стимулятором. Специалисты выделяют 3 отдела, отвечающих за восприятие импульсов. К ним относят затылочную, обеспечивающая обрабатывание зрительных образов; височную, которая связана со слухом; зону гиппокампа. Часть, которая несет ответственность за обработку данных стимуляторов вкуса, расположены рядом с теменем. Здесь располагаются центры, которые отвечают за прием и обработку тактильных импульсов.

Сенсорная способность непосредственно зависит от количества нейронных связей на этом участке. Примерно данные отделы занимают до пятой части от всего размера коры. Повреждение данного участка провоцирует ненадлежащее восприятие, что не позволит продуцировать встречный импульс, который был бы адекватен раздражителю. Например, нарушение в функционировании слуховой зоны не во всех случаях вызывает глухоту, однако способно спровоцировать некоторые эффекты, искажающие нормальное восприятие данных.

Ассоциативная зона

Этот отдел способствует контактированию между импульсами, принимаемыми нейронными связями в сенсорном отделе, и моторикой, которая представляет собой встречный сигнал. Эта часть формирует осмысленные поведенческие рефлексы, а также принимает участие в их осуществлении. По месту расположения выделяются передние зоны, располагающиеся в лобных частях, и задние, занявшие промежуточное положение посреди висков, теменем и затылочным участком.

Для индивида свойственны сильно развитые задние ассоциативные зоны. Данные центры обладают особым предназначением, гарантируя обрабатывание речевых импульсов.

Патологические изменения в работе переднего ассоциативного участка ведет к сбоям в проведении анализа, прогнозирования, на основе пережитых ранее ощущений.

Расстройства в функционировании заднеассоциативного участка усложняет пространственную ориентацию, делает медленнее абстрактные мыслительные процессы, конструирование и идентификацию сложных зрительных образов.

Кора головного мозга ответственна за работу головного мозга. Подобное вызвало изменения в анатомическом строении самого мозга, так как его работа существенно усложнилась. Сверху определенных участков, взаимосвязанных с органами восприятия и двигательным аппаратом, образовались отделы, которые обладают ассоциативными волокнами. Они необходимы для сложной обработки попадающих внутрь мозга данных. Вследствие формирования данного органа начинается новая стадия, где ее значимость существенно возрастает. Данный отдел считается органом, который выражает индивидуальные особенности человека и его сознательную деятельность.