Методы построения и исследования идеализированного объекта. Особенные теоретические методы научного познания абстрагирование, идеализация, формал

Теоретический уровень научного исследования является рациональной (логической) ступенью познания. На теоретическом уровне с помощью мышления происходит переход от чувственно-конкретного представления об объекте исследования к логически-конкретному. Логически-конкретное есть теоретически воспроизведенное в мышлении исследователя конкретное представление об объекте во всем богатстве его содержания. На теоретическом уровне используются следующие методы познания: абстракция, идеализация, мысленный эксперимент, индукция, дедукция, анализ, синтез, аналогия, моделирование.

Абстракция – это мысленное отвлечение от каких-то менее существенных свойств, сторон, признаков изучаемого объекта или явления с одновременным выделением, формированием одной или нескольких существенных сторон, свойств, признаков. Результат, получаемый в процессе абстрагирования называют абстракцией.

Идеализация – это особый вид абстрагирования, мысленное внесение определённых изменений в изучаемый объект в соответствии с целями исследований. Приведем примеры идеализации.

Материальная точка – тело, лишённое всяких размеров. Это абстрактный объект, размерами которого пренебрегают, удобен при описании движения.

Абсолютно черное тело – наделяется несуществующим в природе свойством поглощать абсолютно всю попадающую на него лучистую энергию, ничего не отражая и не пропуская сквозь себя. Спектр излучения абсолютно черного тела является идеальным случаем, поскольку на него не оказывает влияния природа вещества излучателя или состояние его поверхности.

Мысленный эксперимент – это метод теоретического познания, который предполагает оперирование идеальным объектом. Это мысленный подбор положений, ситуаций, которые позволяют обнаружить важные особенности исследуемого объекта. В этом он имеет сходство с реальным экспериментом. Кроме того, он предваряет реальный эксперимент в виде процедуры планирования.

Формализация – это метод теоретического познания, который заключается в использовании специальной символики, позволяющей отвлечься от изучения реальных объектов, от содержания описывающих их теоретических положений и оперировать вместо этого некоторым множеством символов, знаков.



Для построения любой формальной системы необходимо:

1. задание алфавита, т. е. определенного набора знаков;

2. задание правил, по которым из исходных знаков этого алфавита могут быть получены «слова», «формулы»;

3. задание правил, по которым от одних слов, формул данной системы можно переходить к другим словам и формулам.

В результате создается формальная знаковая система в виде определенного искусственного языка. Важным достоинством этой системы является возможность проведения в ее рамках исследования какого-либо объекта чисто формальным путем (оперирование знаками) без непосредственного обращения к этому объекту.

Другое достоинство формализации состоит в обеспечении краткости и четкости записи научной информации, что открывает большие возможности для оперирования ею.

Индукция – (от лат. induction – наведение, побуждение) это метод познания, основывающийся на формально-логическом умозаключении, которое приводит к получению общего вывода на основании частных посылок. Другими словами, это есть движение нашего мышления от частного, единичного к общему. Обнаруживая сходные признаки, свойства у многих объектов определенного класса, исследователь делает вывод о присущности этих признаков, свойств всем объектам данного класса.

Популяризатором классического индуктивного метода познания был Френсис Бэкон. Но он трактовал индукцию слишком широко, считал ее самым важным методом открытия новых истин в науке, главным средством научного познания природы. На самом же деле вышеуказанные методы научной индукции служат, главным образом, для нахождения эмпирических зависимостей между экспериментально наблюдаемыми свойствами объектов и явлений. В них систематизированы простейшие формально-логические приемы, которые стихийно использовались учеными-естествоиспытателями в любом эмпирическом исследовании.

Дедукция – (от лат. deduction – выведение) есть получение частных выводов на основе знания каких-то общих положений. Другими словами, это есть движение нашего мышления от общего положения к частному.

Однако, несмотря на имевшие место в истории науки и философии попытки оторвать индукцию от дедукции, противопоставить их, в реальном процессе научного познания оба эти два метода используется на соответствующем этапе познавательного процесса. Более того, в процессе использования индуктивного метода зачастую «в скрытом виде» присутствует и дедукция. Обобщая факты в соответствии с какими-то идеями, мы косвенно выводим получаемые нами обобщения из этих идей, причем далеко не всегда отдаем себе в этом отчет. Кажется, что наша мысль движется прямо от фактов к обобщениям, т. е., что тут присутствует чистая индукция. На самом же деле, сообразуясь с какими-то идеями, неявно руководствуясь ими в процессе обобщения фактов, наша мысль косвенно идет от идей к этим обобщениям, и, следовательно, тут имеет место и дедукция... Можно сказать, что во всех случаях, когда мы обобщаем, сообразуясь с какими-либо философскими положениями, наши умозаключения являются не только индукцией, но и скрытой дедукцией.

Анализ и синтез. Под анализом понимают разделение объекта на составные частицы с целью их отдельного изучения. В качестве таких частей могут быть какие-то вещественные элементы объекта или же его свойства, признаки, отношения и т. п. Анализ является необходимым и важным этапом в познании объекта. Но он составляет лишь первый этап процесса познания. Для постижения объекта как единого целого нельзя ограничиваться изучением лишь его составных частей. В процессе познания необходимо вскрывать объективно существующие связи между ними, рассматривать их в совокупности, в единстве. Осуществить этот второй этап в процессе познания – перейти от изучения отдельных составных частей объекта к изучению его как единого связанного целого – возможно только в том случае, если метод анализа дополняется другим методом – синтезом. В процессе синтеза производится соединение воедино составных частей изучаемого объекта, расчлененных в результате анализа. На этой основе происходит дальнейшее изучение объекта, но уже как единого целого. При этом синтез не означает простого механического соединения разъединенных элементов в единую систему. Он раскрывает место и роль каждого элемента в системе целого, устанавливает их взаимосвязь и взаимообусловленность.

Анализ и синтез с успехом используются и в сфере мыслительной деятельности человека, т. е. в теоретическом познании. Но и здесь, как и на эмпирическом уровне познания, анализ и синтез – это не две оторванные друг от друга операции. По своему существу они – две стороны единого аналитико-синтетического метода познания.

Аналогия и моделирование. Под аналогией понимается подобие, сходство каких-то свойств, признаков или отношений у различных в целом объектов. Установление сходства (или различия) между объектами осуществляется в результате сравнения. Таким образом, сравнение лежит в основе метода аналогии.

Метод аналогии применяется в самых различных областях науки: в математике, физике, химии, кибернетике, в гуманитарных дисциплинах и т. д. Существуют различные типы выводов по аналогии. Но общим для них является то, что во всех случаях непосредственному исследованию подвергается один объект, а вывод делается о другом объекте. Поэтому вывод по аналогии в самом общем смысле можно определить как перенос информации с одного объекта на другой. При этом первый объект, который собственно и подвергается исследованию, именуется моделью, а другой объект, на который переносится информация, полученная в результате исследования первого объекта (модели), называется оригиналом (иногда – прототипом, образцом и т. д.). Таким образом, модель всегда выступает как аналогия, т. е. модель и отображаемый с ее помощью объект (оригинал) находятся в определенном сходстве (подобии).

Границы научного метода.

Ограниченность научного метода связана, в основном, с присутствием субъективного элемента в познании и обусловлена следующими причинами.

Человеческий опыт, являющийся источником и средством познания окружающего мира, ограничен. Чувства человека позволяют ему лишь ограниченно ориентироваться в окружающем мире. Ограничены возможности опытного познания человеком окружающего мира. Мыслительные возможности человека велики, однако также ограничены.

Господствующая парадигма, религия, философия, социальные условия и другие элементы культуры неизбежно влияют на мировоззрение ученых, а следовательно, и на научный результат.

Христианское мировоззрение исходит из того, что вся полнота знания явлена Творцом и человеку дана возможность обладания им, однако поврежденное состояние человеческой природы ограничивает его способности к познанию. Тем не менее, человек способен к богопознанию, т. е. может познать себя и окружающий мир, увидеть проявление черт Творца в себе и в окружающем мире. Не следует забывать, что научный метод является лишь инструментом познания и в зависимости от того в чьих руках он находится может принести пользу или вред.

Обнаружение устойчивых связей и зависимостей является только первым этапом в процессе научного познания явлений действительности. Необходимо объяснить их основания и причины, выявить сущность явлений и процессов. А это возможно лишь на теоретическом уровне научного познания. К теоретическому уровню относят все те формы познания, в которых в логической форме формулируются законы и другие всеобщие и необходимые связи объективного мира, а также получаемые с помощью логических средств выводы, и вытекающие из теоретических посылок следствия. Теоретический уровень представляет собой различные формы, приемы и этапы опосредованного познания действительности.

Методы и формы познания теоретического уровня в зависимости от выполняемых ими функций можно разбить на две группы. Первая группа - методы и формы познания, с помощью которых создается и исследуется идеализированный объект, представляющий базовые, определяющие отношения и свойства как бы в «чистом» виде. Вторая группа - методы построения и оправдания теоретического знания, которое дано в форме гипотезы, приобретающей в результате статус теории.

К методам построения и исследования идеализированного объекта относятся: абстрагирование, идеализация, формализация, мысленный эксперимент, математическое моделирование.

А) Абстрагирование и идеализация. Понятие идеализированного объекта

Известно, что всякая научная теория изучает либо определенный фрагмент действительности, определенную предметную область, либо определенную сторону, один из аспектов реальных вещей и процессов. При этом теория вынуждена отвлекаться от тех сторон изучаемых ею предметов, которые ее не интересуют. Кроме того, теория часто вынуждена отвлекаться и от некоторых различий изучаемых ею предметов в определенных отношениях. С точки зрения психологии процесс мысленного отвлечения от некоторых сторон, свойств изучаемых предметов, от некоторых отношений между ними и называется абстрагированием. Мысленно выделенные свойства и отношения оказываются на переднем плане, предстают как необходимые для решения задач, выступают в качестве предмета изучения.

Процесс абстрагирования в научном познании не является произвольным. Он подчиняется определенным правилам. Одним из таких правил является соблюдение интервала абстракций. Интервал абстракций – это пределы рациональной обоснованности той или иной абстракции, условия ее «предметной истинности» и границы применимости, устанавливаемые на основе информации, полученной эмпирическими или логическими средствами. Интервал абстракции зависит, во-первых, от поставленной познавательной задачи; во-вторых, то, от чего отвлекаются в процессе постижения объекта, должно быть посторонним (по четко оговоренным критерием) для конкретного объекта, подвергающегося абстрагированию; в третьих, исследователь должен знать, до какого предела данное отвлечение имеет законную силу.

Метод абстрагирования предполагает при исследовании сложных объектов производить концептуальную развертку и концептуальную сборку объектов. Концептуальная развертка означает отображение одного и того же исходного объекта исследования в разных мысленных плоскостях (проекциях) и, соответственно, нахождение для него множества интервалов абстракций. Так, например, в квантовой механике один и тот же объект (элементарная частица) может быть попеременно представлен в рамках двух проекций: то, как корпускула (в одних условиях эксперимента), то, как волна (в других условиях). Эти проекции логически несовместимы между собой, но лишь взятые вместе они исчерпывают всю необходимую информацию о поведении частиц.

Концептуальная сборка – представление объекта в многомерном познавательном пространстве путем установления логических связей и переходов между разными интервалами, образующими единую смысловую конфигурацию. Так, в классической механике одно и то же физическое событие может быть отображено наблюдателем в разных системах в виде соответствующей совокупности экспериментальных истин. Эти разные проекции, тем не менее, могут образовывать некое концептуальное целое благодаря «правилам преобразования Галилея», регулирующим способы перехода от одной группы высказываний к другой.

Абстрагирование как важнейший прием познавательной деятельности человека широко применяется на всех этапах научно-познавательной деятельности, в том числе и на уровне эмпирического познания. На его основе создаются эмпирические объекты. Как отмечал В.С.Степин, эмпирические объекты представляют собой абстракции, фиксирующие признаки реальных предметов опыта. Они являются определенными схематизациями фрагментов реального мира. Любой признак, «носителем» которого является эмпирический объект, может быть найден у соответствующих ему реальных предметов (но не наоборот, так как эмпирический объект репрезентирует не все, а лишь некоторые признаки реальных предметов, абстрагированные из действительности в соответствии с задачами познания и практики). Эмпирические объекты составляют смысл таких терминов эмпирического языка, как «Земля», «провод с током», «расстояние между Землей и Луной» и т. д.

Теоретические же объекты, в отличие от эмпирических, являются не просто абстракциями, а идеализациями, «логическими реконструкциями действительности». Они могут быть наделены не только признаками, которым соответствуют свойства и отношения реальных объектов, но и признаками, которыми не обладает ни один такой объект. Теоретические объекты образуют смысл таких терминов, как «точка», «идеальный газ», «абсолютно черное тело» и т. д.

В логико-методологических исследованиях теоретические объекты называют иногда теоретическими конструктами, а также абстрактными объектами. Объекты такого рода служат важнейшим средством познания реальных предметов и взаимоотношений между ними. Они называются идеализированными объектами, а процесс их создания - идеализацией. Таким образом, идеализация есть процесс создания мысленных, не существующих в действительности объектов, условий, ситуаций посредством мысленного отвлечения от некоторых свойств реальных предметов и отношений между ними или наделения предметов и ситуаций теми свойствами, которыми они в действительности не обладают или не могут обладать, с целью более глубокого и точного познания действительности.

Создание идеализированного объекта необходимо включает в себя абстрагирование - отвлечение от ряда сторон и свойств изучаемых конкретных предметов. Но если мы ограничимся только этим, то еще не получим никакого целостного объекта, а просто уничтожим реальный объект или ситуацию. После абстрагирования нам нужно еще выделить интересующие нас свойства, усилить или ослабить их, объединить и представить как свойства некоторого самостоятельного объекта, который существует, функционирует и развивается согласно своим собственным законам. А это достигается в результате использования метода идеализации .

Идеализация помогает исследователю выделить в чистом виде интересующие его стороны действительности. В результате идеализации объект приобретает свойства, которые в эмпирическом опыте не востребованы. В отличие от обычного абстрагирования идеализация делает упор не на операции отвлечения, а на механизм пополнения . Идеализация дает абсолютно точный конструкт, мысленную конструкцию , в которой то или иное свойство, состояние представлены в предельном , наиболее выраженном виде . Творческие конструкты, абстрактные объекты выступают в роли идеальной модели .

Почему необходимо в познании использовать абстрактные объекты (теоретические конструкты)? Дело в том, что реальный объект всегда сложен, в нем переплетаются значимые для данного исследователя и второстепенные свойства, необходимые закономерные отношения затемняются случайными. Конструкты, идеальные модели - это объекты, наделенные небольшим количеством специфических и существенных свойств, имеющих относительно простую структуру.

Исследователь, опираясь на сравнительно простой идеализированный объект, дать более глубокое и полное описание этих сторон. Познание движется от конкретных объектов к их абстрактным, идеальным моделям, которые, становясь все более точными, совершенными и многочисленными, постепенно дают нам все более адекватный образ конкретных объектов. В этом повсеместном использовании идеализированных объектов состоит одна из наиболее характерных особенностей человеческого познания.

Следует отметить, что идеализация используется как на эмпирическом, так и на теоретическом уровнях. Объекты, к которым относятся научные высказывания, всегда являются идеализированными объектами. Даже в тех случаях, когда мы пользуемся эмпирическими методами познания - наблюдением, измерением, экспериментом, результаты этих процедур непосредственно относятся к идеализированным объектам, и лишь благодаря тому, что идеализированные объекты на этом уровне являются абстрактными моделями реальных вещей, данные эмпирических процедур можно относить к действительным предметам.

Однако роль идеализации резко возрастает при переходе от эмпирического к теоретическому уровню научного познания. Современная гипотетико-дедуктивная теория опирается на некоторый эмпирический базис - совокупность фактов, которые нуждаются в объяснении и делают необходимым создание теории. Но теория не является простым обобщением фактов и не может быть выведена из них логическим путем. Для того чтобы оказалось возможным создание особой системы понятий и утверждений, называемой теорией, сначала вводится идеализированный объект, представляющий собой абстрактную модель действительности, наделенную небольшим количеством свойств и имеющую относительно простую структуру . Этот идеализированный объект выражает специфику и существенные черты изучаемой области явлений. Именно идеализированный объект делает возможным создание теории. Научные теории, прежде всего, отличаются положенными в их основу идеализированными объектами. В специальной теории относительности идеализированным объектом является абстрактное псевдоевклидово четырехмерное множество координат и мгновений времени, при условии, когда отсутствует поле тяготения. Для квантовой механики характерен идеализированный объект, представляемый в случае совокупности п частиц волной в п-мерном конфигурационном пространстве, свойства которой связаны с квантом действия.

Понятия и утверждения теории вводятся и формулируются именно как характеристики ее идеализированного объекта. Основные свойства идеализированного объекта описываются системой фундаментальных уравнений теории. Различие идеализированных объектов теорий приводит к тому, что каждая гипотетико-дедуктивная теория имеет свою специфическую систему фундаментальных уравнений. В классической механике мы имеем дело с уравнениями Ньютона, в электродинамике - с уравнениями Максвелла, в теории относительности - с уравнениями Эйнштейна и т.п. Идеализированный объект дает интерпретацию понятий и уравнений теории. Уточнение уравнений теории, их опытное подтверждение и коррекция ведут к уточнению идеализированного объекта или даже к его изменению. Замена идеализированного объекта теории означает переинтерпретацию основных уравнений теории. Ни одна научная теория не может быть гарантирована от того, что ее уравнения рано или поздно не подвергнутся переинтерпретации. В одних случаях это происходит сравнительно быстро, в других - спустя длительное время. Так, например, в учении о теплоте первоначальный идеализированный объект - теплород - был заменен другим - совокупностью беспорядочно движущихся материальны точек. Иногда модификация или замена идеализированного объекта теории существенно не изменяет вида ее фундаментальных уравнений. В таком случае нередко говорят, что теория сохраняется, но изменяется ее интерпретация. Ясно, что говорить так можно лишь при формалистическом понимании научной теории. Если же под теорией мы понимаем не только определенные математические формулы, но и определенную интерпретацию этих формул, то смена идеализированного объекта должна рассматриваться как переход к новой теории.

Методы научного познания – «совокупность приемов и операций практического и теоретического освоения действительности»

Принято делить методы познания на эмпирические и теоретические.

Абстрагирование, идеализация, формализация, моделирование относится к теоретическому познанию и направлено на формирование целостной картины процесса, познание сущности исследуемых объектов.

Идеализация, абстрагирование замена отдельных свойств предмета или всего предмета символом или знаком, мысленное отвлечение от чего-то, с целью выделения чего-то другого. Идеальные объекты в науке отражают устойчивые связи и свойства объектов: массу, скорость, силу и др. Но идеальные объекты могут и не иметь реальных прообразов в предметном мире, т.е. по мере развития научного знания одни абстракции могут образовываться из других без обращения к практике. Поэтому различают эмпирические и идеальные теоретические объекты.

Идеализация является необходимым предварительным условием построения теории , поскольку система идеализированных, абстрактных образов и определяет специфику данной теории. В системе теории выделяют основные и производные идеализированные понятия. Например, в классической механике таким главным идеализированным объектом выступает механическая система как взаимодействие материальных точек.

В целом идеализация позволяет точно очертить признаки предмета, отвлечься от малосущественных и расплывчатых свойств. Это обеспечивает огромную емкость выражения мыслей. В связи с этим формируются специальные языки науки , что способствует построению сложных абстрактных теорий и в целом процессу познания.

Формализация – оперирование со знаками, сведенными в обобщенные модели, абстрактно-математические формулы. Вывод одних формул из других осуществляется по строгим правилам логики и математики, что и является формальным исследованием основных структурных характеристик изучаемого объекта.

Моделирование. Модель – мысленное или материальное замещение наиболее существенных сторон изучаемого объекта. Модель – это специально созданный человеком предмет или система, устройство, которое в определенном отношении имитирует , воспроизводит реально существующие предметы или системы, являющиеся объектом научного исследования.

В моделировании опираются на аналогии свойств и отношений между оригиналом и моделью. Изучив взаимосвязи, существующие между величинами, описывающими модель, их затем переносят на оригинал и таким образом делают правдоподобное заключение об особенностях поведения последнего.

Моделирование как метод научного познания основано на способности человека абстрагировать изучаемые признаки или свойства у различных предметов, явлений и устанавливать определенные соотношения между ними.


Хотя ученые давно пользовались этим методом, только с середины XIX в. моделирование завоевывает прочное признание у ученых и инженеров. В связи с развитием электроники и кибернетики моделирование превращается в чрезвычайно эффективный метод исследования.

Благодаря применению моделирования закономерностей действительности, которые могли в оригинале изучаться лишь путем наблюдения , они становятся доступными экспериментальному исследованию. Возникает возможность многократного повторения в модели явлений, соответствующих уникальным процессам природы или общественной жизни.

Если рассматривать историю науки и техники с точки зрения применения тех или иных моделей, то можно констатировать, что на первых порах развития науки и техники применялись материальные, наглядные модели. В последующем они постепенно утрачивали одну за другой конкретные черты оригинала, их соответствие оригиналу приобретало все более абстрактный характер. В настоящее время все большее значение приобретает поиск моделей, базирующихся на логических основаниях . Существует множество вариантов классификации моделей. На наш взгляд, наиболее убедительным является следующий вариант:

а) естественно-природные модели (существующие в природе в естественном виде). Пока ни одна из конструкций, созданная человеком, не может конкурировать с природными конструкциями по сложности решаемых задач. Существует наука бионика, цель которой – исследование уникальных природных моделей с целью дальнейшего использования полученных знаний при создании искусственных устройств . Известно например, что создатели модели формы подводной лодки в качестве аналога взяли форму тела дельфина, при конструировании первых летальных аппаратов использовалась модель размаха крыльев птиц и т.д.;

б) вещественно-технические модели (в уменьшенном или увеличенном виде полностью воспроизводящие оригинал). При этом эксперты различают: а) модели, создаваемые для того, чтобы воспроизвести пространственные свойства изучаемого объекта (макеты домов, застройки районов и т.д.); б) модели, воспроизводящие динамику изучаемых объектов, закономерные связи, величины, параметры (модели самолетов, кораблей, платин и т.д.).

Наконец существует третий вид моделей – в) знаковые модели , в том числе математические. Знаковое моделирование позволяет упростить изучаемый предмет, выделить в нем те структурные отношения, которые больше всего интересуют исследователя. Проигрывая вещественно-техническим моделям в наглядности , знаковые модели выигрывают за счет более глубокого проникновения в структуру изучаемого фрагмента объективной реальности.

Так, с помощью знаковых систем удается понять сущность таких сложных явлений , как устройство атомного ядра, элементарных частиц, Вселенной. Поэтому применение знаковых моделей особенно важно в тех областях науки, техники, где имеют дело с изучением предельно общих связей, отношений, структур.

Особенно расширились возможности знакового моделирования в связи с появлением компьютеров. Появились варианты построения сложных знаково-математических моделей, позволяющих выбирать наиболее оптимальные значения величин сложных изучаемых реальных процессов и осуществлять вычислительные эксперименты над ними.

В ходе исследования часто возникает необходимость построения разнообразных моделей изучаемых процессов, начиная от вещественных и кончая концептуальными и математическими моделями.

В целом «построение моделей не только наглядных, но и концептуальных, математических сопровождает процесс научного поиска от его начала до конца, давая возможность охватить в единой системе наглядных и абстрактных образов основные особенности исследуемых процессов».

15. Уровни научного знания: факты, идея, гипотеза, теория, научная картина мира.

Наука - это форма духовной деятельности людей, направленная на производство знаний о природе, обществе и о самом познании, имеющая непосредственной целью постижение истины и открытие объективных законов на основе обобщения реальных фактов в их взаимосвязи, для того чтобы предвидеть тенденции развития действительности и способствовать ее изменению.

На эмпирическом уровне преобладает живое созерцание (чувственное познание), рациональный момент и его формы (суждения, понятия) здесь присутствуют, но имеют подчиненное значение. Признаки эмпирического познания: сбор фактов, их обобщение, описание наблюдаемых и экспериментальных данных, их систематизация.

Теоретический уровень познания характеризуется преобладанием понятий, теорий, законов. Чувственное познание не устраняется, а становится подчиненным аспектом.

Элементарной формой научного знания является научный факт. Как категория науки факт может рассматриваться как достоверное знание о единичном. Научные факты генетически связаны с практической деятельностью человека, отбор фактов, составляющих фундамент науки, так же связан с повседневным опытом человека. В науке фактом признается не всякий полученный результат, поскольку, чтобы прийти к объективному знанию о явлении, необходимо произвести множество исследовательских процедур и их статистическую обработку.

Идея представляет собой неразделимое единство субъективной формы понятия и его объективной формы. Достигается такое единство в высокоразвитых живых организмах. Такой организм, с одной стороны, является реальным объектом, а с другой, он действует только на основе своего субъективного представления о самом себе и об окружающем его мире.

Гипотеза – это предполагаемое решение проблемы. Как правило, гипотеза является предварительным, условным знанием о закономерности в исследуемой предметной области или о существовании некоторого объекта. Главное условие, которому должна удовлетворять гипотеза в науке, - ее обоснованность, этим свойством гипотеза отличается от мнения.

Теория – высшая, самая развитая форма организации научных знаний, которая дает целостное отображение закономерностей некоей сферы действительности и представляет собой знаковую модель этой сферы. Эта модель строится таким образом, что характеристики, имеющие наиболее общую природу, составляют основу модели, другие же подчиняются основным положениям или выводятся из них по логическим законам.

Научная картина мира - это система научных теорий, описывающая реальность. Научная теория - это систематизированные знания в их совокупности. Научные теории объясняют множество накопленных научных фактов и описывают определенный фрагмент реальности (например, электрические явления, механическое движение, превращение веществ, эволюцию видов и т.п.) посредством системы законов. Главное отличие теории от гипотезы - достоверность, доказанность. сам термин теория имеет множество смыслов. Теория в строго научном смысле - это система уже подтвержденного знания, всесторонне раскрывающая структуру, функционирование и развитие изучаемого объекта, взаимоотношение всех его элементов, сторон и теорий.

Функции науки.

Наука – это исторически сложившаяся форма человеческой деятельности, направлена на познание и преобразование объективной действительности, такое духовное производство, которое имеет своим результатом целенаправленно отобранные и систематизированные факты, логически выверенные гипотезы, обобщающие теории, фундаментальные и частные законы, а также методы исследования. Наука – это одновременно и система знаний и их духовное производство, и практическая деятельность на их основе.

Функции науки выделяют в зависимости от общего назначения ее отраслей и их роли в освоении окружающего мира с конструктивной целью.

Функции науки выделяются по основным видам деятельности исследователей, их основным задачам, а также сфере применения полученных знаний. Таким образом, основные функции науки можно определить как познавательную, мировоззренческую, производственную, социальную и культурную.

Познавательная функция является основополагающей, заданной самой сутью науки, назначение которой заключается в познании природы, человека и общества в целом, а также в рационально-теоретическом постижении мира, объяснении процессов и явлений, открытии закономерностей и законов, осуществлении прогнозирования и т.д. Данная функция сводится к производству новых научных знаний.

Мировоззренческая функция во многом переплетается с познавательной. Они взаимосвязаны, поскольку ее целью является разработка научной картины мира и соответствующего ей мировоззрения. Также эта функция подразумевает исследование рационалистического отношения человека к миру, разработку научного миропонимания, что означает, что ученые (наряду с философами) должны разрабатывать научные мировоззренческие универсалии и соответствующее ценностные ориентации.

Производственная функция, которую также можно назвать технико-технологической функцией, необходима для внедрения инноваций, новых форм организаций процессов, технологий и научных нововведений в производственные отрасли. В связи с этим наука превращается в производительную силу, работающую на благо общества, своего рода цех , в котором разрабатываются и внедряются новые идеи и их воплощения. В этом плане ученых даже иногда относят к производственным работникам, что как нельзя более полно характеризует производственную функцию науки.

Социальная функция начала выделяться особенно существенно в последнее время. Это связано с достижениями научно-технической революции. В связи с этим наука превращается в социальную силу. Это проявляется в ситуациях, когда данные науки используются в разработках программ социального и экономического развития. Поскольку такие планы и программы имеют комплексный характер, то их разработка предполагает тесное взаимодействие различных отраслей естественных, общественных и технических наук.

Культурные функции науки (или образовательные) сводится к тому, что наука является своего рода феноменом культуры, важным фактором развития людей, их образования и воспитания. Достижения науки существенно влияют на учебно-воспитательный процесс, содержание программ образования, технологии, методы и форму обучения. Эта функция реализуется через систему образования, СМИ, публицистическую и просветительную деятельность ученых.

Кроме перечисленных функций нельзя забывать и группы   присущих ей традиционных функций. Среди них:

Описательная функция – сбор и накопление данных, фактов. С этой функции (этапа) начинается любая наука, т.к. она может базироваться только на большом количестве фактического материала. Так, например, научная химия могла появиться только тогда, когда ее предшественниками – алхимиками был накоплен огромный фактический материал о химических свойствах различных веществ.

Объяснительная функция – направлена на выявление причинно-следственных связей и зависимостей, построение так называемых «мировых линий» (объяснение явлений и процессов, их внутренних механизмов)

Гносеологическая функция; нацелена на построение системы объективных знаний о свойствах отношений и процессов объективной реальности. Гносеологическая функция органически присуща науке как творческой деятельности по добыванию новых знаний. Задачей науки является объяснение – раскрытие сущности объясняемого объекта, которое может быть осуществлено лишь через познание её отношений и связей с другими сущностями или её внутренних отношений и связей. Познание может проявляться и в форме житейских знаний, художественного и даже религиозного освоения мира

Обобщающая функция – формулирование законов и закономерностей, систематизирующих и вбирающих в себя многочисленные разрозненные явления и факты. В качестве классических примеров можно привести классификацию биологических видов К. Линнея, теорию эволюции Ч. Дарвина, периодический закон Д.И. Менделева.

Предсказательная функция – научные знания позволяют заблаговременно предвидеть неизвестные ранее новые процессы и явления. Так, например, были открыты планеты Уран, Нептун, Плутон, с точностью до секунд астрономы могут рассчитать столкновение Земли с какой-либо кометой и т.д. Позиция науки по отношению к практике, как правило, опережающая. Наука всегда была базой техники и технологии. Так, например, применение компьютеров, лазеров, методов электрохимической обработки, композиционных материалов и т.д. стало возможным только благодаря научным исследованиям. В то же время в области гуманитарных, общественных наук опережающая функция науки может быть реализована далеко не всегда в силу чрезвычайно сложного объекта исследования. Или прогностическая функция проявляется в создании по критериям научной рациональности перспективных моделей изучаемых, любых возможных объектов.

Методы теоретического познания – это абстрагирование, анализ и синтез, индукция и дедукция, идеализация, аналогия, формализация, моделирование, методы гипотез и аксиоматический, системный метод и подход и т. д.

Абстрагирование . Сущность абстрагирования состоит в мысленном отвлечении от несущественных свойств, отношений и связей в объекте и между ними при одновременной фиксации отдельных сторон, аспектов этих предметов в соответствии с целями познания и задачами исследования, конструирования и преобразования. Результатом процесса абстрагирования будут абстракции – понятия естественного языка и понятия науки.

Метод абстрагирования включает два момента. Сначала производится отделение существенного от несущественного, важного от второстепенного в познавательной задаче. Затем производится оценка различных аспектов объекта, действующих факторов, условий, устанавливается наличие общего, принадлежность к определенным классам явлений, объектов и т. п. Необходимой стороной абстрагирования является установление независимости или пренебрежимо малой зависимости от определенных факторов. Далее производится замещение некоторого объекта идеальной или материальной природы, подвергающегося изучению, другим, менее богатым свойствами, имеющим ограниченное число параметров и характеристик. Полученный объект выступает в роли модели первого.

Следует заметить, что операция абстрагирования может применяться как к реальным, так и к абстрактным объектам, которые сами уже были результатом предшествующего абстрагирования. При этом мы как бы удаляемся от конкретности и богатства свойств исходного объекта, обедняем его, но иначе мы не смогли бы охватить широкие классы объектов и их общую сущность, взаимосвязь, форму, строение и т. п. Роль полученной в итоге абстракции состоит в том, что она позволяет в познании назвать казавшиеся ранее разными предметы одним именем, заменить сложное простым, классифицировать многообразие по общим признакам, т. е. выйти в итоге к обобщению, а значит – к закону.

Анализ – это мысленное разделение интересующего нас объекта или его аспектов на отдельные части с целью их систематического изучения. В их роли могут выступать отдельные материальные или идеальные элементы, свойства, отношения и т. д.

Синтез – мысленное соединение ранее изученных элементов в единое целое.

Из приведенных определений уже видно, что это взаимно предполагающие и дополняющие друг друга методы. В зависимости от степени исследованности, глубины проникновения в сущность объекта или его аспектов применяются анализ и синтез различного рода или вида: прямой, или эмпирический, анализ и синтез, которые пригодны на стадии первого, еще поверхностного ознакомления с объектом исследования и его аспектами, особенно при изучении сложного объекта; возвратный, или элементарно-теоретический, анализ и синтез, которые пригодны для постижения моментов, сторон, аспектов сущности, овладения определенными причинно-следственными зависимостями; структурно-генетический анализ и синтез, которые позволяют выделять в объекте исследования самое главное, центральное, решающее, ведущее к развертыванию объекта в целое; они охватывают генетические связи и опосредствования; их целые цепочки ведут к полноте охвата частей и их содержания или к системному видению и описанию объекта.

Индукция и дедукция – следующие два метода – подобно предыдущим парные и взаимодополняющие. Они занимают особое положение в системе научных методов и включают в себя применение чисто формальных логических правил умозаключения и вывода – дедуктивного и индуктивного. Начнем с разъяснения смысла индукции.

Под индукцией понимают умозаключение от частного к общему, когда на основе знания о части предметов делается вывод о свойствах всего класса в целом. При этом можно выделить следующие виды индукции. Полная индукция , когда делается вывод о свойствах данного объекта на основе перебора всех объектов данного класса. Это совершенно достоверное знание. Всякая наука стремится к его получению и использует в роли доказательства достоверности ее выводов, их неопровержимости.

Неполная индукция , когда общий вывод делается из посылок, не охватывающих всех объектов или аспектов данного класса. В ней присутствует, таким образом, момент гипотезы. Ее доказательность слабее предыдущей, ибо нет правил без исключения.

Исторически первой была так называемая перечислительная (или популярная) индукция. Она используется, когда на опыте замечена какая-нибудь регулярность, повторяемость, о чем и формулируют суждение. Если не будет опровергающих примеров, то тогда делается общий вывод в форме умозаключения. Такую индукцию относят к полной. Полную индукцию иначе называют еще научной, так как она дает не только формальный результат, но и доказательство неслучайности найденной регулярности. Такая индукция позволяет уловить и причинно-следственные связи. Пример полной индукции: последовательно проверенные металлы – один, другой, третий и т. д. – обладают электропроводностью, из чего следует вывод, что все металлы электропроводны и т. д. Пример неполной индукции: каждое четное число делится на два, и хотя их всех бесконечно большое множество, мы все же делаем вывод о кратности всех четных чисел двум, и т. п.

Дедуктивным называется умозаключение, в котором вывод о свойствах объекта и о нем самом делается на основании знания общих свойств и характеристик всего множества. Роль дедукции в современном научном познании и знании резко возросла. Это связано с тем, что современная наука и инженерная практика сталкиваются с объектами, недоступными обычному чувственному восприятию (микромир, Вселенная, прошлое человечества, его будущее, очень сложные системы разного рода и т. п.), поэтому все чаще приходится обращаться к мыслям, нежели к наблюдениям и экспериментам. Особое значение дедукция имеет для формализации и аксиоматизации знания, построения гипотез в математике, теоретической физике, теории управления и принятия решений, экономике, информатике, экологии и т. д. Классическая математика – типично дедуктивная наука. Дедукция отличается от других методов тем, что при истинности исходного знания она дает истинное же выводное знание. Однако нельзя и переоценивать силу дедукции. Прежде чем ее применять, надо получить истинное исходное знание, общие посылки, а поэтому особое значение остается за методами получения такого знания, о которых говорилось выше.

Идеализация . Для целей научного познания, конструирования, проектирования и преобразования широко используются так называемые «идеальные объекты». Они не существуют в действительности, принципиально не реализуются на практике, но без них невозможны теоретическое знание и его приложения. К их числу относятся точка, линия, число, абсолютно твердое тело, точечный электрический заряд, заряд вообще, идеальный газ, абсолютно черное тело и многие другие. Науку без них нельзя представить. Мысленное конструирование таких объектов называется идеализацией.

Чтобы идеализация протекала успешно, необходима абстрагирующая деятельность субъекта, а также другие мыслительные операции: индукция, синтез и т. д. При этом мы ставим себе следующие задачи: мысленно лишаем реальные объекты некоторых свойств; наделяем мысленно эти объекты определенными нереальными предельными свойствами; именуем полученный объект. Чтобы выполнить эти задачи, прибегают к многоступенчатому абстрагированию. Например, отвлекаясь от толщины реального предмета, получают плоскость; лишая плоскость одного измерения, получают линию; лишая линию единственного ее измерения, получают точку, и т. п. А как перейти к предельному свойству? Расположим, к примеру, известные нам тела в ряд в соответствии с увеличением их твердости. Тогда, в пределе, мы получим абсолютно твердое тело. Примеры легко можно продолжить. Такой идеальный объект, как несжимаемость, сконструирован теоретически, когда свойство сжимаемости принимается равным нулю. Абсолютно черное тело мы получим, если припишем ему полное поглощение поступающей энергии.

Заметим, что абстрагирование от любого из свойств есть обязательно приписывание ему противоположного свойства, причем прежнее отбрасывается, иначе мы не получим идеального объекта.

Аналогия . Это один из методов познания, когда из сходства некоторых признаков, аспектов у двух или более объектов делают вывод о сходстве других признаков и свойств этих объектов.

Построим аналогию. Известно, что Солнце – рядовая звезда нашей Галактики, в которой порядка 100 млрд таких звезд. У этих светил много общего: огромные массы, высокая температура, определенная светимость, спектр излучения и т. д. У них есть спутники – планеты. По аналогии с нашей Солнечной системой ученые делают вывод, что кроме нашей в галактике есть еще обитаемые миры, что мы не одиноки во Вселенной. Аналогия не дает абсолютной достоверности для вывода: в ней всегда есть элемент догадки, предположения, и только опыт и практика могут вынести окончательный приговор той или иной аналогии.

Формализация . Сам этот термин неоднозначен и применяется в разных значениях. Первое – как метод решения специальных проблем в математике и логике. Например, доказательство непротиворечивости математических теорий, независимости аксиом и т. п. Вопросы такого рода решаются путем использования специальной символики, что позволяет оперировать не с утверждениями теории в их содержательном виде, а с набором символов, формул разного рода. Второе – в широком смысле – под формализацией понимается метод изучения разнообразных проблем путем отображения их содержания, структуры, отношений и функций при помощи различных искусственных языков: математики, формальной логики и других наук.

В чем состоит роль формализации в науке? Прежде всего формализация обеспечивает полноту обозрения определенных проблем, обобщенность подхода к ним. Далее благодаря символике, с чем формализация неизбежно связана, исключаются многозначность (полисемия) и размытость терминов обычного языка, в результате чего рассуждения становятся четкими и строгими, а выводы доказательными. И, наконец, формализация обеспечивает упрощение изучаемых объектов, заменяет их исследование изучением моделей: возникает как бы моделирование на основе символики и формализмов. Это помогает успешнее решать различные познавательные, проектировочные, конструкторские и другие задачи. Из сказанного видно, что формализация связана с моделированием, она связана также с абстрагированием, идеализацией и другими методами.

Моделирование . Моделирование как мощный и эффективный метод применяется эмпирически в виде макетов и на теоретическом уровне в виде знаковых построений. Различают аналоговое моделирование, когда оригинал и модель описываются одинаковыми математическими уравнениями, формулами, схемами и т. п. Сложнее – знаковое моделирование. Здесь в роли моделей – заместителей реальных объектов – служат числа, схемы, символы и т. п. Собственно, и технический проект в значительной своей части выражается именно таким способом. Но этот вид моделирования получает дальнейшее свое развитие благодаря математике и логике в виде логико-математического моделирования. Здесь операции, действия с вещами, процессами, явлениями, свойствами и отношениями заменены знаковыми конструкциями, структурой их отношений, выражением на этой основе динамики объектов и их функций.

Еще одним шагом вперед стало развитие модельного представления информации на компьютерах: компьютерного моделирования. Построенные при этом модели опираются на дискретное представление информации об объектах. Открывается возможность моделировать в режиме реального времени, строить виртуальную реальность.

Аксиоматический метод это метод организации наличного знания в дедуктивную систему. Он широко применяется в математике и математизированных дисциплинах. При использовании этого метода ряд простых идей, ранее доказанных или очевидных, вводится в основы теории в виде исходных положений. В математике их называют аксиомами, в теоретической физике и химии – «началами» или принципами. Все остальное знание – все теоремы, все законы и их следствия – выводятся из них по определенным логическим правилам, т. е. дедуктивно.

Утверждение аксиоматического метода в науке связывают с появлением знаменитых «Начал» Евклида. Основные требования к данному методу таковы: непротиворечивость аксиом, т. е. в системе аксиом или начал не должны одновременно присутствовать некоторое утверждение и его отрицание; полнота, т. е. аксиом без следствий не должно быть, и их количество должно дать нам все следствия или их отрицания; независимость, когда любая аксиома не должна быть выводима из других. К данной системе добавить нечего.

Достоинства аксиоматического метода состоят в том, что аксиоматизация требует точного определения используемых понятий и строгости рассуждений. Она упорядочивает знание, исключает из него ненужные элементы, устраняет двусмысленность и противоречия, позволяет по-новому взглянуть на прежде достигнутое знание в рамках определенной теоретической системы. Правда, применение этого метода ограничено, и в рамках математики он тоже имеет определенные границы. В выяснении этого вопроса выдающуюся роль сыграла доказанная Куртом Геделем теорема о принципиальной неполноте развитых формальных систем знания. Суть ее в том, что в рамках данной системы можно сформулировать такие утверждения, которые нельзя ни доказать, ни опровергнуть без выхода из данной аксиоматизированной системы в метатеорию. Для всей математики такую роль играет арифметика. Результат Геделя привел к краху иллюзии математиков о всеобщей аксиоматизации математики.

К особенным методам научного познания относятся процедуры абстрагирования и идеализации, в ходе которых образуются научные понятия.
Абстрагирование - мысленное отвлечение от всех свойств, связей и отношений изучаемого объекта, которые представляются несущественными для данной теории.
Результат процесса абстрагирования называется абстракцией. Примером абстракций являются такие понятия, как точка, прямая, множество и т.д.
Идеализация - это операция мысленного выделения какого-либо одного, важного для данной теории свойства или отношения (не обязательно, чтобы это свойство существовало реально), и мысленного конструирования объекта, наделенного этим свойством.
Именно посредством идеализации образуются такие понятия, как «абсолютно черное тело», «идеальный газ», «атом» в классической физике и т.д. Полученные таким образом идеальные объекты в действительности не существуют, так как в природе не может быть предметов и явлений, имеющих только одно свойство или качество. В этом состоит главное отличие идеальных объектов от абстрактных.
Формализация - использование специальной символики вместо реальных объектов.
Ярким примером формализации является широкое использование математической символики и математических методов в естествознании. Формализация дает возможность исследовать объект без непосредственного обращения к нему и записывать полученные результаты в краткой и четкой форме.
Индукция
Индукция - метод научного познания, представляющий собой формулирование логического умозаключения путем обобщения данных наблюдения и эксперимента, получение общего вывода на основании частных посылок, движение от частного к общему.
Различают полную и неполную индукцию. Полная индукция строит общий вывод на основании изучения всех предметов или явлений данного класса. В результате полной индукции полученное умозаключение имеет характер достоверного вывода. Но в окружающем нас мире не так много подобных объектов одного класса, число которых ограниченно настолько, что исследователь может изучить каждый из них.
Поэтому гораздо чаще ученые прибегают к неполной индукции, которая строит общий вывод на основании наблюдения ограниченного числа фактов, если среди них не встретились такие, которые противоречат индуктивному умозаключению. Например, если ученый в ста или более случаях наблюдает один и тот же факт, он может сделать вывод, что этот эффект проявится и при других сход ных обстоятельствах. Естественно, что добытая таким путем истин неполна, полученное знание носит вероятностный характер и тре бует дополнительного подтверждения.
Дедукция
Индукция не может существовать в отрыве от дедукции.
Дедукция - метод научного познания, представляющий собой получение частных выводов на основе общих знаний, вывод от общего к частному.
Дедуктивное умозаключение строится по следующей схеме: все предметы класса А обладают свойством В, предмет а относится к классу А; следовательно, а обладает свойством В. Например: «Все люди смертны»; «Иван - человек»; следовательно, «Иван - смертен».
Дедукция как метод познания исходит из уже познанных законов и принципов. Поэтому метод дедукции не позволяет получить содержательно нового знания. Дедукция представляет собой лишь способ логического развертывания системы положений на базе исходного знания, способ выявления конкретного содержания общепринятых посылок. Поэтому она не может существовать в отрыве от индукции. Как индукция, так и дедукция незаменимы в процессе научного познания.
Гипотеза
Решение любой научной проблемы включает выдвижение различных догадок, предположений, а чаще всего более или менее обоснованных гипотез, с помощью которых исследователь пытается объяснить факты, не укладывающиеся в старые теории.
Гипотеза представляет собой всякое предположение, догадку или предсказание, выдвигаемое для устранения ситуации неопределенности в научном исследовании.
Поэтому гипотеза - это не достоверное, а вероятное знание, истинность или ложность которого еще не установлена.